187 research outputs found
The internal rotation and shift-test for the detection of superior lesions of the rotator cuff : reliability and clinical performance
Background:
Using reliable and valid clinical tests are essential for proper diagnosis and clinical outcomes among injuries involving the rotator cuff. The addition of a new clinical examination test could improve the clinical diagnosis and informative value of the sensitivity and specificity of pathology. This study of diagnostic accuracy evaluated the use of a new rotator cuff test, called the internal rotation and shift-test (IRO/shift-test), to determine its reliability and clinical performance (sensitivity, specificity, positive (PPV)/negative predictive value (NPV)). Clinical diagnostic outcomes were confirmed with radiological findings (MRI).
Methods:
100 patients from a specialized shoulder unit participated (64 male, 36 female, mean age: 55 ± 13.5 years). A single-blinded (no knowledge of prior clinical or technical diagnostics) study design was used with two experienced physicians performing the IRO/shift-test. For clinical performance, all clinical testing was compared with MRI.
Results:
The intra-rater (ICC = 0.73, 95% CI: 60-82) and inter-rater (ICC = 0.89, 95% CI: 81-94) coefficients for the IRO/shift-test showed good-to-excellent reliability. 75% of the patients showed a positive IRO/shift-test, while 65% had a radiologically diagnosed superior rotator cuff tear. 60% of these patients had both a positive IRO/shift-test and objective rotator cuff tear via MRI. The sensitivity of the IRO/shift-test to detect superior rotator cuff lesions based on MRI diagnosis was calculated at 92% (95% CI: 86-99%), while specificity was 67% (95% CI: 50-84%). Predictive values were also found to be high with 86% PPV (95% CI: 78-94%) and 80% NPV (95% CI: 64-96%).
Conclusion:
Our results demonstrate that the IRO/shift-test is a reliable and valid tool for assessing superior rotator cuff pathology. With good-to-excellent intrarater and inter-rater reliability and strong sensitivity and specificity this test should be considered a valuable addition to clinicians’ cadre of clinical evaluation tools
Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial
Objective: To evaluate the efficacy and safety of secukinumab, a fully human, anti-interleukin (IL)-17A monoclonal antibody, in patients with psoriatic arthritis (PsA).
Methods: 42 patients with active PsA fulfilling ClASsification for Psoriatic ARthritis (CASPAR) criteria were randomly assigned (2:1) to receive two intravenous secukinumab doses (10 mg/kg; n=28) or placebo (n=14) 3 weeks apart. The primary endpoint was the proportion of American College of Rheumatology (ACR) 20 responses at week 6 for secukinumab versus placebo (one-sided p<0.1).
Results: Primary endpoint: ACR20 responses at week 6 were 39% (9/23) for secukinumab versus 23% (3/13) for placebo (p=0.27). ACR20 responses were greater with secukinumab versus placebo at week 12 (39% (9/23) vs 15% (2/13), p=0.13) and week 24 (43% (10/23) vs 18% (2/11), p= 0.14). At week 6, ‘good’ European League Against Rheumatism response was seen in 21.7% (5/23) secukinumab versus 9.1% (1/11) placebo patients. Compared with placebo at week 6, significant reductions were observed among secukinumab recipients for C reactive protein (p=0.039), erythrocyte sedimentation rate (p=0.038), Health Assessment Questionnaire Disability Index (p=0.002) and Short Form Health Survey (SF-36; p=0.030) scores. The overall adverse event (AE) frequency was comparable between secukinumab (26 (93%)) and placebo (11 (79%)) recipients. Six serious AEs (SAEs) were reported in four secukinumab patients and one SAE in one placebo patient.
Conclusions: Although the primary endpoint was not met, clinical responses, acute-phase reactant and quality of life improvements were greater with secukinumab versus placebo, suggesting some clinical benefit. Secukinumab exhibited satisfactory safety. Larger clinical trials of secukinumab in PsA are warranted
Induction of sustained remission in early inflammatory arthritis with the combination of infliximab plus methotrexate: the DINORA trial.
BACKGROUND: In the present study, we explored the effects of immediate induction therapy with the anti-tumour necrosis factor (TNF)α antibody infliximab (IFX) plus methotrexate (MTX) compared with MTX alone and with placebo (PL) in patients with very early inflammatory arthritis. METHODS: In an investigator-initiated, double-blind, randomised, placebo-controlled, multi-centre trial (ISRCTN21272423, http://www.isrctn.com/ISRCTN21272423 ), patients with synovitis of 12 weeks duration in at least two joints underwent 1 year of treatment with IFX in combination with MTX, MTX monotherapy, or PL randomised in a 2:2:1 ratio. The primary endpoint was clinical remission after 1 year (sustained for at least two consecutive visits 8 weeks apart) with remission defined as no swollen joints, 0-2 tender joints, and an acute-phase reactant within the normal range. RESULTS: Ninety patients participated in the present study. At week 54 (primary endpoint), 32% of the patients in the IFX + MTX group achieved sustained remission compared with 14% on MTX alone and 0% on PL. This difference (p < 0.05 over all three groups) was statistically significant for IFX + MTX vs PL (p < 0.05), but not for IFX + MTX vs MTX (p = 0.10), nor for MTX vs PL (p = 0.31). Remission was maintained during the second year on no therapy in 75% of the IFX + MTX patients compared with 20% of the MTX-only patients. CONCLUSIONS: These results indicate that patients with early arthritis can benefit from induction therapy with anti-TNF plus MTX compared with MTX alone, suggesting that intensive treatment can alter the disease evolution. TRIAL REGISTRATION: The trial was registered at http://www.isrctn.com/ISRCTN21272423 on 4 October 2007 (date applied)/12 December 2007 (date assigned). The first patient was included on 24 October 2007
Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice
AbstractCaloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species
Framework and baseline examination of the German National Cohort (NAKO)
The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5
Mild-to-Moderate Kidney Dysfunction and Cardiovascular Disease: Observational and Mendelian Randomization Analyses
BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke. METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million personyears of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank. RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eG FR values 105 mL.min(-1).1.73 m(-2), compared with those with eG FR between 60 and 105 mL.min(-1).1.73 m(-2). Mendelian randomization analyses for CHD showed an association among participants with eGFR 105 mL.min(-1).1.73 m(-2). Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin Alc, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD. CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function
Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder
Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD
- …