123 research outputs found

    DNA Sequence Variation among Conspecific Accessions of the Legume Coursetia caribaea Reveals Geographically Localized Clades Here Ranked as Species

    Get PDF
     This is the author accepted manuscript. The final version is available from ASPT via the DOI in this recordCoursetia caribaea is geographically and morphologically the most variable species in the genus Coursetia and in the tribe Robinieae (Leguminosae, Papilionoideae). Because of potentially undetected species, we assessed the phylogenetic relationships among the eight taxonomic varieties of C. caribaea. Sampling included nuclear ribosomal internal transcribed spacer sequences from 489 Robinieae accessions representing all varieties of C. caribaea and 38 of the 40 species of Coursetia, in addition to chloroplast trnD-trnT sequences from 186 accessions. Separate and combined phylogenetic analyses resolved a clade of conspecific accessions of the Bolivian C. caribaea var. astragalina as sister to the central Andean Coursetia grandiflora clade. Also distantly related to Coursetia caribaea var. caribaea accessions were those of the coastal Oaxacan C. caribaea var. pacifica, which formed the sister clade to accessions of the central Andean C. caribaea var. ochroleuca. The estimated mean ages of the stem clades for these three lineages, 11, 7.7, and 7.7 Ma, respectively, contrasted to the estimated mean ages of the corresponding crown clades of 0, 0, and 1.5 Ma. The contrasting stem and crown ages suggest that these taxa, appropriately ranked as species, Coursetia astragalina , Coursetia diversifolia , and Coursetia ochroleuca , each have persisted over evolutionary time frames as distinct geographically localized populations in seasonally dry tropical forests and woodlands.USDA National Institute of Food and Agricultur

    The Evolution of a Capacity to Build Supra-Cellular Ropes Enabled Filamentous Cyanobacteria to Colonize Highly Erodible Substrates

    Get PDF
    Several motile, filamentous cyanobacteria display the ability to self-assemble into tightly woven or twisted groups of filaments that form macroscopic yarns or ropes, and that are often centimeters long and 50-200 microm in diameter. Traditionally, this trait has been the basis for taxonomic definition of several genera, notably Microcoleus and Hydrocoleum, but the trait has not been associated with any plausible function.Through the use of phylogenetic reconstruction, we demonstrate that pedigreed, rope-building cyanobacteria from various habitats do not form a monophyletic group. This is consistent with the hypothesis that rope-building ability was fixed independently in several discrete clades, likely through processes of convergent evolution or lateral transfer. Because rope-building cyanobacteria share the ability to colonize geologically unstable sedimentary substrates, such as subtidal and intertidal marine sediments and non-vegetated soils, it is also likely that this supracellular differentiation capacity imparts a particular fitness advantage in such habitats. The physics of sediment and soil erosion in fact predict that threads in the 50-200 microm size range will attain optimal characteristics to stabilize such substrates on contact.Rope building is a supracellular morphological adaptation in filamentous cyanobacteria that allows them to colonize physically unstable sedimentary environments, and to act as successful pioneers in the biostabilization process

    The Maslov index in weak symplectic functional analysis

    Get PDF
    We recall the Chernoff-Marsden definition of weak symplectic structure and give a rigorous treatment of the functional analysis and geometry of weak symplectic Banach spaces. We define the Maslov index of a continuous path of Fredholm pairs of Lagrangian subspaces in continuously varying Banach spaces. We derive basic properties of this Maslov index and emphasize the new features appearing.Comment: 34 pages, 13 figures, 45 references, to appear in Ann Glob Anal Geom. The final publication will be available at http://www.springerlink.com. arXiv admin note: substantial text overlap with arXiv:math/040613

    Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    Get PDF
    INTRODUCTION: Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. METHODS: We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. RESULTS: We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. CONCLUSION: These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Whole-Gene Positive Selection, Elevated Synonymous Substitution Rates, Duplication, and Indel Evolution of the Chloroplast clpP1 Gene

    Get PDF
    Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare. genes experiencing negative (purifying) selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs. gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the controversial issue of whether negative or positive selection is to be expected after gene duplications by providing evidence for the latter alternative. The observed increase in synonymous substitution rates in some of the lineages indicates that the detection of positive selection may be obscured under such circumstances. Future studies are required to explore the functional significance of the large inserted repeated amino acid motifs, as well as the possibility that synonymous substitution rates may be affected by positive selection

    Cytokine-dependent and cytokine-independent roles for Mcl-1: genetic evidence for multiple mechanisms by which Mcl-1 promotes survival in primary T lymphocytes

    Get PDF
    Myeloid cell leukemia sequence-1 (Mcl-1) is a critical anti-apoptotic factor in T lymphocytes. However, in spite of the many pro-apoptotic proteins with proposed binding to Mcl-1, the specific interactions by which Mcl-1 regulates primary T-cell survival under different conditions have not been fully explored. Further, how different trophic cytokines modulate the specific role(s) of Mcl-1 is unknown. Here, we use genetic mouse models to dissect the roles of Mcl-1 in primary T lymphocytes. Using the inducible Mcl-1-floxed estrogen receptor-Cre fusion protein (Mcl-1f/fERCre) deletion system in combination with genetic modification of other B-cell lymphoma 2 (Bcl-2) family members, we show that loss of pro-apoptotic Bcl-2 homologous antagonist/killer (Bak) rescues the survival of Mcl-1-deficient T cells in the presence of IL-7. Without IL-7, the survival of Mcl-1-deficient cells cannot be rescued by loss of Bak, but is partially rescued by overexpression of Bcl-2 or loss of Bcl-2-interacting mediator of cell death (Bim). Thus, Mcl-1 and Bcl-2 have a shared role, the inhibition of Bim, in promoting T-cell survival during cytokine withdrawal. Finally, we show that other common gamma-chain (γc) cytokines differentially modulate the roles of Mcl-1. IL-15 has effects similar to those of IL-7 in memory T cells and naïve CD8+ cells, but not naïve CD4+ cells. However, IL-4 maintains Mcl-1 and Bcl-2 but also upregulates Bim and Bcl-2-associated X protein (Bax), thus altering the cell's dependence on Mcl-1

    A simulation study comparing supertree and combined analysis methods using SMIDGen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supertree methods comprise one approach to reconstructing large molecular phylogenies given multi-marker datasets: trees are estimated on each marker and then combined into a tree (the "supertree") on the entire set of taxa. Supertrees can be constructed using various algorithmic techniques, with the most common being matrix representation with parsimony (MRP). When the data allow, the competing approach is a combined analysis (also known as a "supermatrix" or "total evidence" approach) whereby the different sequence data matrices for each of the different subsets of taxa are concatenated into a single supermatrix, and a tree is estimated on that supermatrix.</p> <p>Results</p> <p>In this paper, we describe an extensive simulation study we performed comparing two supertree methods, MRP and weighted MRP, to combined analysis methods on large model trees. A key contribution of this study is our novel simulation methodology (Super-Method Input Data Generator, or <it>SMIDGen</it>) that better reflects biological processes and the practices of systematists than earlier simulations. We show that combined analysis based upon maximum likelihood outperforms MRP and weighted MRP, giving especially big improvements when the largest subtree does not contain most of the taxa.</p> <p>Conclusions</p> <p>This study demonstrates that MRP and weighted MRP produce distinctly less accurate trees than combined analyses for a given base method (maximum parsimony or maximum likelihood). Since there are situations in which combined analyses are not feasible, there is a clear need for better supertree methods. The source tree and combined datasets used in this study can be used to test other supertree and combined analysis methods.</p

    The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene

    Get PDF
    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease comple
    • …
    corecore