
Roskilde
University

The Maslov index in weak symplectic functional analysis

Booss-Bavnbek, Bernhelm; Zhu, Chaofeng

Published in:
Annals of Global Analysis and Geometry

DOI:
10.1007/s10455-013-9367-z

Publication date:
2013

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Booss-Bavnbek, B., & Zhu, C. (2013). The Maslov index in weak symplectic functional analysis. Annals of Global
Analysis and Geometry, 44(3), 283-318. https://doi.org/10.1007/s10455-013-9367-z

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 02. Dec. 2021

https://doi.org/10.1007/s10455-013-9367-z
https://doi.org/10.1007/s10455-013-9367-z


Annals of Global Analysis and Geometry
 

The Maslov index in weak symplectic functional analysis
--Manuscript Draft--

 
Manuscript Number:

Full Title: The Maslov index in weak symplectic functional analysis

Article Type: Original Research

Keywords: Closed relations;  Fredholm pairs of Lagrangians;  Maslov index;  spectral flow;
symplectic splitting;  weak symplectic structure

Corresponding Author: Bernhelm Booss-Bavnbek
Roskilde University
Roskilde, DENMARK

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Roskilde University

Corresponding Author's Secondary
Institution:

First Author: Bernhelm Booss-Bavnbek

First Author Secondary Information:

Order of Authors: Bernhelm Booss-Bavnbek

Chaofeng Zhu

Order of Authors Secondary Information:

Abstract: We recall the Chernoff-Marsden definition of weak symplectic structure and give a
rigorous treatment of the functional analysis and geometry of weak symplectic Banach
spaces. We define the Maslov index of a continuous path of Fredholm pairs of
Lagrangian subspaces in continuously varying Banach spaces. We derive basic
properties of this Maslov index and emphasize the new features appearing.

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation



Ann Glob Anal Geom / submitted manuscript No.
(will be inserted by the editor)

The Maslov index in weak symplectic functional analysis

Bernhelm Booß-Bavnbek · Chaofeng Zhu

Received: date / Accepted: date

Abstract We recall the Chernoff-Marsden definition of weak symplectic structure and give
a rigorous treatment of the functional analysis and geometry of weak symplectic Banach
spaces. We define the Maslov index of a continuous path of Fredholm pairs of Lagrangian
subspaces in continuously varying Banach spaces. We derive basic properties of this Maslov
index and emphasize the new features appearing.

Keywords Closed relations, Fredholm pairs of Lagrangians, Maslov index, spectral flow,
symplectic splitting, weak symplectic structure

2010 Mathematics Subject Classification Primary 53D12; Secondary 58J30

1 Introduction

1.1 Our setting and goals

First, we recall the main features of finite-dimensional and infinite-dimensional strong sym-
plectic analysis and geometry and argue for the need to generalize from strong to weak
assumptions.

1.1.1 The finite-dimensional case

The study of dynamical systems and the variational calculus of N-particle classical mechan-
ics automatically lead to a symplectic structure in the phase space X = R6N of position and
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impulse variables: when we trace the motion of N particles in 3-dimensional space, we deal
with a bilinear (in the complex case sesquilinear) anti-symmetric (in the complex case skew-
symmetric) and non-degenerate form ω : X×X → R. The reason for the skew-symmetry is
the asymmetry between position and impulse variables corresponding to the asymmetry of
differentiation. To carry out the often quite delicate calculations of mechanics, the usual
trick is to replace the skew-symmetric form ω by a skew-symmetric matrix J with J2 =−I
such that

ω(x,y) = 〈Jx,y〉 for all x,y ∈ X , (1)

where 〈·, ·〉 denotes the inner product in X .
For geometric investigations, the key concept is a Lagrangian subspace of the phase

space. For two continuous paths of Lagrangian subspaces, an intersection index, the Maslov
index is well defined. It can be considered a re-formulation or generalization of counting
conjugate points on a geodesic. In Morse Theory, this number equals the classical Morse
index, i.e., the number of negative eigenvalues of the Morse index form. This Morse Index
Theorem (cf. M. Morse [30]) for geodesics on Riemannian manifolds was extended by W.
Ambrose [1], J.J. Duistermaat [22], P. Piccione and D.V. Tausk [33,34], and the second
author [41,42].

For a systematic review of the basic vector analysis and geometry and for the physics
background, we refer to V.I. Arnold [2] and M. de Gosson [25].

1.1.2 The strong symplectic infinite-dimensional case

As shown by K. Furutani and the first author in [7], the finite-dimensional approach of the
Morse Index Theorem can be generalized to a separable Hilbert space when we assume that
the form ω is bounded and can be expressed by (1) with a bounded operator J, which is
skew-self-adjoint (i.e., J∗ = −J) and not only injective but invertible. The invertibility of J
is the whole point of strong symplectic structure. Then, without loss of generality, one can
assume J2 = −I like in the finite-dimensional case (see also Lemma 1 below), and many
calculations of the finite-dimensional case can be preserved with only slight modification.
The model space for strong symplectic Hilbert spaces is the von Neumann space β (A) :=
dom(A∗)/dom(A) of natural boundary values of a closed symmetric operator A in a Hilbert
space X with symplectic form given by Green’s form

ω(γ(u),γ(v)) : = 〈A∗u,v〉−〈u,A∗v〉 for all u,v ∈ dom(A∗), (2)

where 〈·, ·〉 denotes the inner product in X and γ : dom(A∗)→ β (A) denotes the trace map.
A typical example is provided by a linear symmetric differential operator A of first order
over a manifold M with boundary Σ . Here we have the minimal domain dom(A) = H1

0 (M)
and the maximal domain dom(A∗)⊃H1(M). Note that the inclusion is strict for dimM > 1.
Recall that H1

0 (M) denotes the closure of C∞
0 (M \Σ) in H1(M). For better reading we don’t

mention the corresponding vector bundles in the notation of the Sobolev spaces of vector
bundle sections.

As in the finite-dimensional case, the basic geometric concept in infinite-dimensional
strong symplectic analysis is the Lagrangian subspace, i.e., a subspace which is isotropic
and co-isotropic at the same time. Contrary to the finite-dimensional case, however, the
common definition of a Lagrangian as a maximal isotropic space or an isotropic space of
half dimension becomes desolate.

To define the Maslov index in the infinite-dimensional case as intersection number of
two continuous paths of Lagrangian subspaces, one has to make the additional assumption
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that corresponding Lagrangians make a Fredholm pair so that, in particular, we have finite
intersection dimensions.

Following a suggestion by A. Floer [23], a multitude of formulae was achieved of vary-
ing generality to express the spectral flow of a curve of self-adjoint extensions of a fixed
or of a curve of symmetric operators by the Maslov index of corresponding curves of La-
grangians, see T. Yoshida [39], L. Nicolaescu [31], S. E. Cappell, R. Lee, and E. Y. Miller
[18], the first author, jointly with K. Furutani and N. Otsuki [8,9] and P. Kirk and M. Lesch
[27]. See also the results by the present authors in [13] for varying boundary conditions but
fixed maximal domain and in [14] (in preparation) also for varying maximal domain. Re-
cently, M. Prokhorova [35] considered a path of Dirac operators on a two-dimensional disk
with a finite number of holes subjected to local elliptic boundary conditions and obtained a
beautiful explicit formula for the spectral flow (respectively, the Maslov index).

1.1.3 Beyond the limits of the strong symplectic assumption

Weak (i.e., not necessarily strong) symplectic structures are met on the way to a spectral
flow formula in the full generality wanted: for continuous curves of, say linear formally
self-adjoint elliptic differential operators of first order over a compact manifold of dimen-
sion ≥ 2 with boundary and with varying maximal domain (i.e., admitting arbitrary con-
tinuous variation of the coefficients of first order) and with continuously varying regular
(elliptic) boundary conditions, see [14]. An interesting new feature for the comprehensive
generalization is the following “technical” problem: For regular (elliptic) boundary value
problems (say for a linear formally self-adjoint elliptic differential operator A of first or-
der on a compact smooth manifold M with boundary Σ ), there are three canonical spaces
of boundary values: the above mentioned von Neumann space β (A) = dom(A∗)/dom(A),
which is a subspace of the distributional Sobolev space H−1/2(Σ); the space of boundary
values H1/2(Σ)'H1(M)/H1

0 (M) of the operator domain H1(M); and the most familiar and
basic L2(Σ).1 As in (2), Green’s form induces symplectic forms on all three section spaces
which are mutually compatible.

More precisely, Green’s form yields a strong symplectic structure not only on β (A), but
also on L2(Σ) by

ω(x,y) : = −〈Jx,y〉L2(Σ) .

Here J denotes the principal symbol of the operator A over the boundary in inner normal
direction. It is invertible (= injective and surjective, i.e., with bounded inverse) since A is
elliptic. For the induced symplectic structure on the Sobolev space H1/2(Σ) the correspond-
ing operator J′ is not invertible for dimΣ ≥ 1, see Remark 2b in Section 2.1 below. So,
for dimΣ ≥ 1 the space H1/2(Σ) becomes an only weak symplectic Hilbert space, to use a
notion introduced by Chernoff and Marsden [19, Section 1.2, pp. 4-5].

An additional incitement to investigate weak symplectic structures comes from the stun-
ning observation of E. Witten (explained by M.F. Atiyah in [3] in a heuristic way). He con-
sidered a weak (and degenerate) symplectic form on the loop space Map(S1,M) of a finite-
dimensional closed orientable Riemannian manifold M and noticed that a (future) thorough
understanding of the infinite-dimensional symplectic geometry of that loop space “should

1 In the tradition of geometry inspired analysis, we think mostly of homogeneous systems when talking of
elliptic boundary value problems. Our key reference is the monograph [11] by K. P. Wojciechowski and the
first author and the supplementary elaborations by J. Brüning and M. Lesch in [16]. For a more comprehen-
sive treatment, emphasizing non-homogeneous boundary value problems and assembling all relevant section
spaces in a huge algebra, we refer to the more recent [37] by B.-W. Schulze.
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lead rather directly to the index theorem for Dirac operators” (l.c., p. 43). Of course, re-
stricting ourselves to the linear case, i.e. to the geometry of Lagrangian subspaces instead of
Lagrangian manifolds, we can only marginally contribute to that program in this paper.

1.2 Main results and plan of the paper

In this paper our goal is to deal with the preceding “technical” problem. To do that, we
generalize the results of J. Robbin and D. Salamon [36], S.E. Cappell, R. Lee, and E.Y.
Miller [17], K. Furutani, N. Otsuki and the first author in [8,9] and of P. Kirk and M. Lesch
in [27], i.e., we shall give a rigorous definition of the Maslov index for continuous curves
of Fredholm pairs of Lagrangian subspaces in varying weak symplectic Banach spaces and
derive basic properties. We also want to find a method to treat the case of singular manifolds.
Consequently, part of our results will be formulated and proved for relations instead of
operators.

At the whole, we aim for a “clean” presentation in the sense that results are proved
in the affordable generality. We shall, e.g., prove purely algebraic results algebraically in
symplectic vector spaces and purely topological results in Banach spaces when ever possible
- in spite of the fact that we shall deal with symplectic Hilbert spaces in most applications.

The routes of [8,9] and [27] are barred to us because they rely on the concept of strong
symplectic Hilbert space. Consequently, we have to replace some of the familiar arguments
of symplectic analysis by new arguments. A few of the most elegant lemmata of strong sym-
plectic analysis can not be retained, but, luckily, the new arguments will show a considerable
strength that is illustrative and applicable also in the conventional strong case.

In Section 2, we give a thorough presentation of weak symplectic functional analysis.
Basic concepts are defined in Subsection 2.1. A new feature of weak symplectic analysis
is the lack of a canonical symplectic splitting: for strong symplectic Hilbert space, we can
assume J2 = −I by smooth deformation of the metric, and obtain the canonical splitting
X = X+⊕X− into mutually orthogonal closed subspaces X± := ker(J∓ iI) which are both
invariant under J. That permits the representation of all Lagrangian subspaces as graph of
unitary operators from X+ to X− (see Lemma 2), which yields a transfer of contractibility
from the unitary group to the space of Lagrangian subspaces. Moreover, that representation
is the basis for a functional analytical definition of the Maslov index. For weak symplectic
Hilbert or Banach space, the preceding construction doesn’t work any longer and we must
assume that a symplectic splitting is given and fixed (its existence follows, e.g., from Zorn’s
Lemma).

For applications to an elliptic differential operator A of first order, acting on sections of
a Hermitian vector bundle E over the Riemannian manifold M with boundary Σ , we note
that the symplectic Hilbert space structures of H1/2(Σ ;E|Σ ) and L2(Σ ;E|Σ ) are compatible
and their symplectic splitting is defined by the bundle endomorphism (the principal symbol
of A in inner normal direction) J : E|Σ → E|Σ in the following way:

H± := H1/2(Σ ;E±|Σ ) and L± := L2(Σ ;E±|Σ )

with E±|Σ := lin. span of
{

positive
negative

}
eigenspaces of iJ. (3)

Note that L+,L− change continuously if J changes continuously.
In Subsection 2.2, we turn to Fredholm pairs of Lagrangian subspaces to prepare for

the counting of intersection dimensions in the definition of the Maslov index. Here another
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new feature of weak symplectic analysis is that the Fredholm index of a Fredholm pair
of Lagrangian subspaces need not vanish. On the one hand, this opens the gate to new
interesting theorems. On the other hand, the re-formulation of well-known definitions and
lemmata in the weak symplectic setting becomes rather heavy since we have to add the
vanishing of the Fredholm index as an explicit assumption.

As a side effect of our weak symplectic investigation, we hope to enrich the classical
literature with our new purely algebraic conditions for isotropic subspaces becoming La-
grangians, see Lemma 4 and Propositions 1 and 2.

At present, the homotopy types of the full Lagrangian Grassmannian and of the Fred-
holm Lagrangian Grassmannian remain unknown for weak symplectic structures. As a ser-
vice to the reader, we give a list of related open problems in Subsection 2.3 below. To us,
however, it seems remarkable that a wide range of familiar geometric features can be re-
gained in weak symplectic functional analysis – in spite of the incomprehensibility of the
basic topology!

In Subsection 2.4, we lay the next foundation for a rigorous definition of the Maslov in-
dex by investigating continuous curves of operators and relations that generate Lagrangians
in the new wider setting. Referring to the concepts of our Appendix, we define the spectral
flow of such curves.

In Section 3 we finally come to the intersection geometry. In Subsection 3.1, we show
how to treat continuously varying weak symplectic structures and define the Maslov index
in fixed weak symplectic Banach space with continuously varying symplectic splitting. We
obtain the full list of basic properties of the Maslov index as listed by S.E. Cappell, R. Lee,
and E.Y. Miller in [17]. We can not claim that this new Maslov index is always independent
of the splitting projections. However, for strong symplectic Banach space the independence
will be proved in Proposition 6. That establishes the coincidence with the common definition
of the Maslov index.

In Subsection 3.2, in our general context, we establish the relation between real sym-
plectic analysis (in the tradition of classical mechanics) on the one side, and the more elegant
complex symplectic analysis (as founded by J. Leray in [28]) on the other side.

In Subsection 3.3, we pay special attention to questions related to the embedding of
symplectic spaces, Lagrangian subspaces and curves into larger symplectic spaces. Our in-
vestigations are inspired by the extremely delicate embedding questions between the two
strong symplectic Hilbert spaces β (A) and L2(Σ) as studied by K. Furutani, N. Otsuki and
the first author in [9]. One additional reason for our interest in embedding problems is our
observation of Remark 2c, that each weak symplectic Hilbert space can naturally be embed-
ded in a strong symplectic Hilbert space, imitating the embedding of H1/2(Σ) into L2(Σ).

In Appendix A, we give a rigorous definition of the spectral flow for admissible families
of closed relations. Our discussion of continuous operator families in Subsection 2.4 and the
whole of Section 3 is based on that definition.

The main results of this paper were achieved many years ago by the authors and infor-
mally disseminated in [12]. Through all the years, our goal was to establish a truly general
spectral flow formula by applying the weak symplectic functional analysis. But here we met
a technical gap in the argumentation: Only recently we found the correct sufficient condi-
tions for continuous variation of the Cauchy data spaces (or, alternatively put, the continuous
variation of the pseudo-differential Calderón projection) for curves of elliptic operators in
joint work with G. Chen and M. Lesch [6]. Now that gap is bridged and a full general
spectral flow formula is obtained in [14]. We have a full picture of the meaning of weak
symplectic functional analysis and consider that the time has come for regular publication
of our results.
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2 Weak symplectic functional analysis

2.1 Basic symplectic functional analysis

We fix our notation. To keep track of the required assumptions we shall not always assume
that the underlying space is a Hilbert space but permit Banach spaces and – for some con-
cepts – even just vector spaces. For easier presentation and greater generality, we begin with
complex symplectic spaces.

Definition 1 Let X be a complex Banach space. A mapping

ω : X×X −→ C

is called a (weak) symplectic form on X , if it is sesquilinear, bounded, skew-symmetric, and
non-degenerate, i.e.,
(i) ω(x,y) is linear in x and conjugate linear in y;
(ii) |ω(x,y)| ≤C‖x‖‖y‖ for all x,y ∈ X ;
(iii) ω(y,x) = −ω(x,y);
(iv) Xω := {x ∈ X | ω(x,y) = 0 for all y ∈ X} = {0}.
Then we call (X ,ω) a (weak) symplectic Banach space.

There is a purely algebraic concept, as well.

Definition 2 Let X be a complex vector space and ω a form which satisfies all the assump-
tions of Definition 1 except (ii). Then we call (X ,ω) a complex symplectic vector space.

Definition 3 Let (X ,ω) be a complex symplectic vector space.
(a) The annihilator of a subspace λ of X is defined by

λ
ω := {y ∈ X | ω(x,y) = 0 for all x ∈ λ}.

(b) A subspace λ is called symplectic, isotropic, co-isotropic, or Lagrangian if

λ ∩λ
ω = {0} , λ ⊂ λ

ω , λ ⊃ λ
ω , λ = λ

ω ,

respectively.
(c) The Lagrangian Grassmannian L (X ,ω) consists of all Lagrangian subspaces of (X ,ω).

Definition 4 Let (X ,ω) be a symplectic vector space and X+,X− be linear subspaces. We
call (X ,X+,X−) a symplectic splitting of X , if X = X+⊕X−, the quadratic form −iω is
positive definite on X+ and negative definite on X−, and

ω(x,y) = 0 for all x ∈ X+ and y ∈ X− . (4)

Remark 1 (a) By definition, each 1-dimensional subspace in real symplectic space is isotropic,
and there always exists a Lagrangian subspace. However, there are complex symplectic Hil-
bert spaces without any Lagrangian subspace. That is, in particular, the case if dimX+ 6=
dimX− in N∪{∞} for a single (and hence for all) symplectic splittings.
(b) If dimX is finite, a subspace λ is Lagrangian if and only if it is isotropic with dimλ =
1
2 dimX .
(c) In symplectic Banach space, the annihilator λ ω is closed for any subspace λ . In particu-
lar, all Lagrangian subspaces are closed, and we have for any subspace λ the inclusion

λ
ωω ⊃ λ . (5)
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(d) Let X be a vector space and denote its (algebraic) dual space by X ′. Then each symplectic
form ω induces a uniquely defined injective mapping J : X → X ′ such that

ω(x,y) = (Jx,y) for all x,y ∈ X , (6)

where we set (Jx,y) := (Jx)(y).
If (X ,ω) is a symplectic Banach space, then the induced mapping J is a bounded, injec-

tive mapping J : X→X∗ where X∗ denotes the (topological) dual space. If J is also surjective
(so, invertible), the pair (X ,ω) is called a strong symplectic Banach space. As mentioned in
the Introduction, we have taken the distinction between weak and strong symplectic struc-
tures from Chernoff and Marsden [19, Section 1.2, pp. 4-5].

If X is a Hilbert space with symplectic form ω , then the induced mapping J is a bounded,
skew-self-adjoint operator (i.e., J∗ = −J) on X with kerJ = {0} and can be written in the

form J =
(

iA+ 0
0 −iA−

)
with A±> 0 bounded self-adjoint (but not necessarily invertible, i.e.,

A−1
± not necessarily bounded). As in the strong symplectic case, we then have that λ ⊂ X is

Lagrangian if and only if λ⊥ = Jλ .

The proof of the following lemma is straightforward and is omitted.

Lemma 1 Any strong symplectic Hilbert space (X ,〈·, ·〉,ω) (i.e., with invertible J) can be
made into a strong symplectic Hilbert space (X ,〈·, ·〉′,ω) with J′2 =−I by smooth deforma-
tion of the inner product of X into

〈x,y〉′ := 〈
√

J∗Jx,y〉

without changing ω .

Remark 2 (a) In a strong symplectic Hilbert space many calculations become quite easy.
E.g., the inclusion (5) becomes an equality, and all Fredholm pairs of Lagrangian subspaces
have vanishing index.
(b) From the Introduction, we recall an important example of a weak symplectic Hilbert
space: Let A be a formally self-adjoint linear elliptic differential operators of first order
over a smooth compact Riemannian manifold M with boundary Σ . As mentioned in the
Introduction, we have (we suppress mentioning the vector bundle)

H1/2(Σ)' H1(M)/H1
0 (M)

with uniformly equivalent norms. Green’s form yields a strong symplectic structure on
L2(Σ) by

{x,y} := −〈Jx,y〉L2(Σ) .

Here J denotes the principal symbol of the operator A over the boundary in inner normal
direction. It is invertible since A is elliptic. For the induced symplectic structure on H1/2(Σ)
we define J′ by

{x,y} = −〈J′x,y〉H1/2(Σ) for x,y ∈ H1/2(Σ).

Let B be a formally self-adjoint elliptic operator B of first order on Σ . By Gårding’s inequal-
ity, the H1/2 norm is equivalent to the induced graph norm. This yields J′ = (I + |B|)−1J.
Since B is elliptic, it has compact resolvent. So, (I + |B|)−1 is compact in L2(Σ); and so is
J′. Hence J′ is not invertible. In the same way, any dense subspace of L2(Σ) inherits a weak
symplectic structure from L2(Σ).
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(c) Each weak symplectic Hilbert space (X ,〈·, ·〉,ω) with induced injective skew-self-adjoint
J can naturally be embedded in a strong symplectic Hilbert space X ′,〈·, ·〉′,ω ′) with invert-
ible induced J′ by setting 〈x,y〉′ := 〈|J|x,y〉 as in Lemma 1 and then completing the space.
This imitates the situation of the embedding of H1/2(Σ) into L2(Σ) . It shows that the weak
symplectic Hilbert space H1/2(Σ) with its embedding into L2(Σ) yields a model for all
weak symplectic Hilbert spaces. In Section 3.3, we shall elaborate on the embedding weak
↪→ strong a little further.

A key result in symplectic analysis is the following lemma. The representation of La-
grangian subspaces as graphs of unitary mappings from one component X+ to the comple-
mentary component X− of the underlying symplectic vector space (to be considered as the
induced complex space in classical real symplectic analysis, see, e.g., K. Furutani and the
first author [7, Section 1.1]) goes back to J. Leray [28]. We give a simplification for complex
vector spaces, first announced in [41]. Of course, the main ideas were already contained in
the real case.

Lemma 2 Let (X ,ω) be a strong symplectic Hilbert space with J2 =−I. Then

(i) the space X splits into the direct sum of mutually orthogonal closed subspaces

X = ker(J− iI)⊕ker(J+ iI),

which are both invariant under J;
(ii) there is a 1-1 correspondence between the space U J of unitary operators from ker(J−

iI) to ker(J+ iI) and L (X ,ω) under the mapping U 7→ λ :=G(U) (= graph of U);
(iii) if U,V ∈U J and λ :=G(U), µ :=G(V ), then (λ ,µ) is a Fredholm pair (see Definition

5b) if and only if U −V , or, equivalently, UV−1− Iker(J+iI) is Fredholm. Moreover, we
have a natural isomorphism

ker(UV−1− Iker(J+iI))' λ ∩µ . (7)

The proof of (i) is clear; (ii) will follow from Lemma 3; and (iii) from Proposition 2
below.

The preceding method to characterize Lagrangian subspaces and to determine the di-
mension of the intersection of a Fredholm pair of Lagrangian subspaces provides the basis
for defining the Maslov index in strong symplectic spaces of infinite dimensions (see, in
different formulations and different settings, the quoted references [7], [9], [24], [27], and
Zhu and Long [43]).

Surprisingly, it can be generalized to weak symplectic Banach spaces in the following
way.

Lemma 3 Let (X ,ω) be a symplectic vector space with a symplectic splitting (X ,X+,X−).
(a) Each isotropic subspace λ can be written as the graph

λ = G(U)

of a uniquely determined injective operator

U : dom(U)−→ X−

with dom(U)⊂ X+ . Moreover, we have

ω(x,y) = −ω(Ux,Uy) for all x,y ∈ dom(U). (8)
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(b) If X is a Banach space, then X± are always closed and the operator U, defined by a
Lagrangian subspace λ is closed as an operator from X+ to X− (not necessarily densely
defined).
(c) For a closed isotropic subspace λ in a strong symplectic Banach space X, we have
dom(U) and imU are closed. In particular, if λ is Lagrangian, then dom(U) = X+ and
imU = X−; i.e., the generating U is bounded and surjective with bounded inverse.

Proof a. Let λ ⊂ X be isotropic and v+ + v−,w+ +w− ∈ λ with v±,w± ∈ X± . By the
isotropic property of λ and our assumption about the splitting X = X+⊕X− we have

0 = ω(v++ v−,w++w−) = ω(v+,w+)+ω(v−,w−). (9)

In particular, we have

ω(v++ v−,v++ v−) = ω(v+,v+)+ω(v−,v−) = 0

and so v− = 0 if and only if v+ = 0. So, if the first (respectively the second) components
of two points v++ v−,w++w− ∈ λ coincide, then also the second (respectively the first)
components must coincide.

Now we set

dom(U) := {x ∈ X+ | ∃y ∈ X− such that x+ y ∈ λ}.

By the preceding argument, y is uniquely determined, and we can define Ux := y. By con-
struction, the operator U is an injective linear mapping, and property (8) follows from (9).
b. One checks easily that X± = (X∓)ω . Annihilators are always closed. This proves the first
part of (b). Now let λ be a Lagrangian subspace, i.e., λ = λ ω . So, λ is closed. It is the graph
of U . So U is closed.
c. Let λ =G(U). Let {xn} be a sequence in X+ convergent to x ∈ X+. Since X is strong, we
see from (8) that the sequence {Uxn} is a Cauchy sequence and therefore is also convergent.
Denote by y the limit of {Uxn}. Since λ is closed, we have x ∈ domU and y = Ux. Thus
dom(U) is closed. We apply the same argument to dom(U−1) ⊂ X−, relative to the inner
product iω and obtain that imU is closed.

Now assume that λ is a Lagrangian subspace. Firstly we show that U is densely defined
in X+ . Indeed, if dom(U) 6= X+, there would be a v ∈ V where V denotes the orthogonal
complement of dom(U) in X+ with respect to the inner product on X+ defined by −iω .
Clearly (dom(U))ω =V +X− . So, V = (dom(U))ω ∩X+ . Then v+0 ∈ λ ω \λ . That con-
tradicts the Lagrangian property of λ . So, we have dom(U) = X+ .

Since U has a closed graph, it follows that dom(U) = X+ and U is bounded. Applying
the same arguments to dom(U−1) ⊂ X−, relative to the inner product iω yields imU =
dom(U−1) = X− and U−1 is bounded.

Remark 3 (a) Note that the symplectic splitting is not unique. Its existence can be proved
by Zorn’s Lemma. In our applications, the geometric background provides natural splittings
(see Equation 3). For varying splittings see also the discussion below in Section 3.
(b) The symplectic splitting and the corresponding graph representation of isotropic and La-
grangian subspaces must be distinguished from the splitting in complementary Lagrangian
subspaces which yields the common representation of Lagrangian subspaces as images in
the real category (see Lemma 9 below).
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2.2 Fredholm pairs of Lagrangian subspaces

A main feature of symplectic analysis is the study of the Maslov index. It is an intersection
index between a path of Lagrangian subspaces with the Maslov cycle, or, more generally,
with another path of Lagrangian subspaces.

Before giving a rigorous definition of the Maslov index in weak symplectic functional
analysis (see below Section 3) we fix the terminology and give several simple criteria for a
pair of isotropic subspaces to be Lagrangian.

We recall:

Definition 5 (a) The space of (algebraic) Fredholm pairs of linear subspaces of a vector
space X is defined by

F 2
alg(X) := {(λ ,µ) | dimλ ∩µ <+∞ and dimX/(λ +µ)<+∞} (10)

with
index (λ ,µ) := dimλ ∩µ−dimX/(λ +µ). (11)

(b) In a Banach space X , the space of (topological) Fredholm pairs is defined by

F 2(X) := {(λ ,µ) ∈F 2
alg(X) | λ ,µ and λ +µ ⊂ X closed}. (12)

Remark 4 Actually, in Banach space the closedness of λ + µ follows from its finite codi-
mension in X in combination with the closedness of λ ,µ (see [8, Remark A.1] and [26,
Problem 4.4.7]). So, the set of algebraic Fredholm pairs of Lagrangian subspaces of a sym-
plectic Banach space X coincides with the set FL 2(X) of topological Fredholm pairs of
Lagrangian subspaces of X .

We begin with a simple algebraic observation.

Lemma 4 Let (X ,ω) be a symplectic vector space with transversal subspaces λ ,µ . If λ ,µ
are isotropic subspaces, then they are Lagrangian subspaces.

Proof From linear algebra we have

λ
ω ∩µ

ω = (λ +µ)ω = {0},

since λ +µ = X . From
λ ⊂ λ

ω ,µ ⊂ µ
ω (13)

we get
X = λ

ω ⊕µ
ω . (14)

To prove λ ω = λ (and similarly for µ), we consider a x ∈ λ ω . It can be written in the form
x = y+ z with y ∈ λ and z ∈ µ because of the splitting X = λ ⊕ µ . Applying (13) and the
splitting (14) we get y = x and so z = 0, hence x ∈ λ .

With a little work, the preceding lemma can be generalized from direct sum decompo-
sition to (algebraic) Fredholm pairs. Firstly we have

Lemma 5 Let V,W be two vector spaces and f : V ×W → C be a sesquilinear mapping.
Assume that dimW <+∞. If for each v ∈V , the condition f (v,w) = 0 for all w ∈V implies
v = 0, then we have dimV ≤ dimW.
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Proof Let W̃ be the space of conjugate linear functionals on W . Let f̃ : V → W̃ be the
induced map of f defined by ( f̃ (v))(w) = f (v,w). Then f̃ is linear. Our condition is f̃ is
injective. Thus we have dimV ≤ dimW̃ = dimW .

Corollary 1 Let (X ,ω) denote a symplectic vector space.
(a) For any finite-codimensional linear subspace λ , we have dimλ ω ≤ dimX/λ .
(b) For any finite dimensional linear subspace µ , we have µωω = µ and dim µ = dimX/µω .

Proof a. Define f : λ ω × (X/λ )→ C by f (x,y+ λ ) = ω(x,y) for all x ∈ λ ω and y ∈ X .
Then f satisfies the condition in Lemma 5. So our result follows.
b. Define g : (X/µω)× µ → C by g(x+ µω ,y) = ω(x,y) for all x ∈ µ and y ∈ H. Then
g satisfies the condition in Lemma 5. So we have dimX/∩ µω ≤ dim µ . By (a) we have
dim µωω ≤ dimX/∩µω . Since µ ⊂ µωω , our result follows.

Proposition 1 Let (X ,ω) be a symplectic vector space and (λ ,µ) ∈F 2
alg(X) . If λ ,µ are

isotropic subspaces with index (λ ,µ)≥ 0, then λ and µ are Lagrangian subspaces of X,

index (λ ,µ) = 0, (λ +µ)ω = λ ∩ µ, and (λ +µ)ωω = λ +µ.

Proof Firstly we show that X̃ := (λ + µ)/(λ ∩ µ) is a symplectic vector space with the
induced form

ω̃([x+ y], [ξ +η ]) := ω(x+ y,ξ +η) for x,ξ ∈ λ and y,η ∈ µ,

where [x+ y] := x+ y+λ ∩ µ denotes the class of x+ y in λ+µ

λ∩µ
. Since λ ,µ are isotropic,

we have ω(x+y+ z,ξ +η +ζ ) = ω(x+y,ξ +η) for any z,ζ ∈ λ ∩µ . So ω̃ is well defined
and inherits the algebraic properties from ω .

To show that (X̃)ω̃ = {0}, we observe

(λ +µ)ω = λ
ω ∩µ

ω ⊃ λ ∩µ . (15)

By Corollary 1a, we have

dim(λ +µ)ω ≤ dimX/(λ +µ)≤ dim(λ ∩µ).

Here the last inequality is just the non-negativity of the Fredholm index as defined in (11).
This proves

dim(λ +µ)ω = dimX/(λ +µ) = dim(λ ∩µ). (16)

Combining (16) with (15) yields

λ ∩µ = λ
ω ∩µ

ω = (λ +µ)ω . (17)

By Corollary 1b, we have

dimX/(λ +µ) = dimλ ∩µ = dimX/(λ ∩µ)ωω .

Thus λ +µ = (λ +µ)ωω .
Moreover, one checks that (

λ +µ

λ ∩µ

)ω̃

=
(λ +µ)ω

λ ∩µ
. (18)



12

With (17) that proves that λ+µ

λ∩µ
is a true symplectic vector space for the induced form ω̃

which is spanned by the transversal isotropic subspaces

λ +µ

λ ∩µ
=

λ

λ ∩µ
⊕ µ

λ ∩µ
.

By Lemma 4, the spaces λ

λ∩µ
, µ

λ∩µ
are Lagrangian subspaces.

Clearly λ ⊂ λ ω ∩ (λ +µ). Now consider x ∈ λ and y ∈ µ with x+ y ∈ λ ω . Then

[x+ y] ∈
(

λ

λ ∩µ

)ω̃

=
λ

λ ∩µ

by the Lagrangian property of λ

λ∩µ
. It follows that x+ y ∈ λ , hence

λ
ω ∩ (λ +µ) = λ and similarly µ

ω ∩ (λ +µ) = µ . (19)

Combined with the fact

λ
ω ⊂ (λ ∩µ)ω = (λ +µ)ωω = λ +µ,

the inclusion λ ⊃ λ ω follows and so the Lagrangian property of λ (and similarly of µ).

Remark 5 For related topological (unsolved) puzzles see below Subsection2.3.

We close this subsection with the following characterization of Fredholm pairs.

Proposition 2 Let (X ,ω) be a symplectic Banach space and let (X ,X+,X−) be a symplectic
splitting. Let λ ,µ be isotropic subspaces. Let U,V denote the generating operators for λ ,µ
in the sense of Lemma 3. We assume that V is bounded and bounded invertible. Then
(a) The space µ is a Lagrangian subspace of X.
(b) Moreover,

(λ ,µ) ∈F 2(X) ⇐⇒ UV−1− IX− Fredholm operator with domain V (dom U).

(c) In this case, U−V closed Fredholm operator with domain dom U and

index (λ ,µ) = index (UV−1− IX−).

Proof a. Since µ = G(V ) is an isotropic subspace of X with V : X+ → X− bounded and
bounded invertible, the space µ ′ :=G(−V ) is also isotropic. We show that µ,µ ′ are transver-
sal in X . Then by Lemma 4, µ (and µ ′) are Lagrangian subspaces. First, from the uniqueness
of defining V (see, e.g., the proof of Lemma 3a), we have µ ∩µ ′ = {0}.

Next, let x+ y, or, more suggestively,
(

x
y

)
denote any arbitrary point in X with x ∈ X+

and y ∈ X− . We set

z :=
x+V−1y

2
and w :=

x−V−1y
2

.

Then z+w = x and z−w =V−1y, so(
x
y

)
=

(
z

V z

)
+

(
w
−V w

)
.
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This proves X = µ⊕µ ′ .
b and c. Let λ =G(U) and µ =G(V ) with V bounded and bounded invertible. Let P+, re-
spectively P− , denote the projection of X = X+⊕X− onto the first, respectively, the second
factor. Then

λ ∩µ =
{( x

V x

)
| x ∈ dom(U) and Ux = V x

}
.

So, P− induces an algebraic and topological isomorphism between λ ∩ µ and ker
(
UV−1−

IX−
)
.

Now we determine

λ +µ =
{( x

Ux

)
+

(
y

V y

)
| x,y ∈ X+

}
=
{( x′

V x′

)
+

(
0
z

)
| x′ ∈ X+ and z ∈ im(UV−1− IX−)

}
= µ⊕ im(UV−1− IX−).

The last direct sum sign comes from the invertibility of V which induces µ ∩X− = {0}
and, similarly, µ +X− = X , and so finally the direct sum decomposition X = µ⊕X− with
projections Πµ and Π− onto the components. So, Π− yields an algebraic and topological
isomorphism of λ + µ onto im(UV−1− IX−). In particular, we have λ + µ closed in X if
and only if im(UV−1− IX−) closed in X− and

X/(λ +µ)' X−/ im(UV−1− IX−)

with coincidence of the codimensions.

2.3 Open topological problems

2.3.1 Fredholm pairs of Lagrangian subspaces with negative index?

Corollary 1a shows that Fredholm pairs of Lagrangian subspaces in symplectic vector space
can not have positive index. In contrast to the strong case, one may expect that we have
pairs with negative index in weak symplectic Hilbert space. By now, however, this is an
open problem.

2.3.2 Characterization of Lagrangian subspaces by canonical symmetry property of the
projections?

The delicacy of Lagrangian analysis in weak symplectic Hilbert space may also be illumi-
nated by addressing the orthogonal projection onto a Lagrangian subspace. In strong sym-
plectic Hilbert space with unitary J, the range of an orthogonal projection is Lagrangian if
and only if the projections P and I−P are conjugated by the J operator in the way

I−P = JPJ∗ ,

which is familiar from characterizing elliptic self-adjoint pseudo-differential boundary con-
ditions for elliptic differential of first order, see [11, Proposition 20.3]. In weak symplectic
analysis, J maps the range imP onto a dense subset of kerP, but there the argument stops.
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2.3.3 Contractibility of the space of Lagrangian subspaces?

There are two more potential differences between the weak and the strong case, namely re-
garding the topology: while the Lagrangian Grassmannian L (X ,ω) inherits contractibility
from the space of unitary operators in separable Hilbert space by Lemma 2(ii), more refined
arguments will be needed to prove the contractibility in the weak case, if at all it is true.

2.3.4 Bott periodicity of the homotopy type of the space of Fredholm pairs of Lagrangian
subspaces?

Next, consider the space FLλ (X) of all Lagrangian subspaces which form a Fredholm pair
with a given Lagrangian subspace λ . Its topology is presently also unknown in the weak
case, whereas we have

π1
(
FLλ (X)

)∼= Z
in strong symplectic Hilbert space X (see [8, Corollary 4.3] and the generalization to Bott
periodicity in [27, Equation (6.2) with Lemma 6.1 and Proposition 6.5]).

2.4 Spectral flow for curves of “unitary” operators

We begin with some observations on inner product space.

Lemma 6 Let (X ,hX ), (Y,hY ), (Z,hZ) denote three inner product spaces, A, B linear rela-
tions between X and Y , and C a linear relation between X and Z.
(a) Assume that C is a linear operator, dom(A)⊂ dom(C), and hY (y,y)≤ hZ(Cx,Cx) for all
(x,y) ∈ A. Then A is a linear operator.
(b)Assume that B is a linear operator, dom(A) = dom(C)⊂ dom(B), and

hY (y,y)+hZ(z,z)≤ hY (Bx,Bx) (20)

for all (x,y) ∈ A and (x,z) ∈C. Then A and C are linear operators and ker(B−A)⊂ kerC.

Proof a. Let y∈ kerA, i.e. (0,y)∈ A. By our assumption we have hY (y,y)≤ hZ(C0,C0) = 0.
Since hY is positive definite, we have y = 0.
b. By (a) A and C are linear operators. Let x ∈ ker(B−A). Then Bx = Ax. By (20) we have
hZ(Cx,Cx)≤ 0. Since hZ is positive definite, we have Cx = 0, i.e. x ∈ kerC.

Let X be a complex Banach space. We introduce some notations for various spaces of
operators in X :

C (X) := closed operators on X ,
B(X) := bounded linear operators X → X ,
K (X) := compact linear operators X → X ,
F (X) := bounded Fredholm operators X → X ,

C F (X) := closed Fredholm operators on X .

If no confusion is possible we will omit “(X)” and write C , B,K , etc.. By C sa,Bsa etc.,
we denote the set of self–adjoint elements in C , B, etc. in the case that X has an inner
product.

We assume that X is a inner product space with a fixed inner product (i.e., a sesquilinear,
self-adjoint positive definite form) h : X×X → C which is bounded

|h(x,y)| ≤ c‖x‖‖y‖ for all x,y ∈ X .
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Definition 6 An operator A ∈ C (X) will be called unitary with respect to h, if

h(Ax,Ay) = h(x,y) for all x,y ∈ dom(A).

Remark 6 (a) Note that h induces a uniformly smaller norm on X which makes X into a
Hilbert space if and only if X becomes complete for this h-induced norm.
(b) The concept of h-unitary extends trivially to closed operators with dense domain in
one Banach space, equipped with an inner product, and range in a second Banach space,
possibly with a different inner product. Exactly in this sense, for any Lagrangian subspace
the generating operator U ∈C (X+,X−) (established in Lemma 3) is h-unitary with h(x,y) =
∓iω(x,y) on X± .

Like for unitary operators in Hilbert space, the following lemma shows that a unitary
operator with respect to h has no eigenvalues outside the unit circle.

Lemma 7 Let A ∈ C (X) be unitary with respect to h and λ ∈ C, |λ | 6= 1. Then ker(A−
λ I) = {0}.

Proof Let x ∈ ker(A−λ I), so Ax = λx and

h(x,x) = h(Ax,Ax) = |λ |2h(x,x).

Since |λ | 6= 1, we get h(x,x) = 0 and so x = 0 by h positive definite.

For a certain subclass of unitary operators with respect to h we show that they have
discrete spectrum close to 1. Consequently, they are admissible with respect to the positive
half-line ` (in the sense of Definition 11 of our Appendix) and so permit the definition of
spectral flow through ` for continuous families (same Appendix).

Proposition 3 (a) Let X be a Banach space with bounded inner product h. Let A ∈ C (X)
be an operator satisfying

h(Ax,Ay) ≤ h(x,y) for all x,y ∈ domA.

We assume A− I ∈ C F (X) of index 0. If either A is h-unitary or A is bounded, then there is
a bounded neighborhood N ⊂ C of 1 such that

σ(A)∩ N̄ ⊂ {1}, dimPN(A) = dimker(A− I).

(b) Let {hs} be a continuous family of inner products for X. Let As ∈ C (X) be unitary with
respect to hs. We assume that the family {As} is continuous. We denote h0 =: h and A0 =: A
and choose N like in (a). Then for s� 1 the spectrum part σ(As)∩N has finite algebraic
multiplicity and we have

σ(As)∩N ⊂ S1 .

Proof a. Since ker(A− I) is finite-dimensional, we have an h-orthogonal splitting

X = ker(A− I)⊕X1

with closed X1 . (Take X1 := Π(X) with Π(x) := x−∑
n
j=1 h(x,e j)e j, where {e j} is an h-

orthonormal basis of ker(A− I)). We notice that ker(A− I)⊂ dom(A), so

dom(A) = ker(A− I)⊕ (dom(A)∩X1). (21)
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Then the operator A can be written in block form

A =

(
I0 A01
0 A11

)
, (22)

where I0 denotes the identity operator on ker(A− I).
Since A is h-unitary, by Lemma 6b we have ker(A11− I)⊂ kerA01. So we have

ker(A11− I)⊂ ker(A11− I)∩kerA01∩X1 = ker(A− I)∩X1 = {0}.

If A is h-unitary, let y ∈ dom(A)∩X1 and x ∈ ker(A− I). Then

h(x,Ay) = h(Ax,Ay) = h(x,y) = 0

by (21). So, the range im(A|dom(A)∩X1) is h-orthogonal to ker(A− I) and, hence, contained
in X1 . Hence A01 = 0. We observe that A− I is closed as bounded perturbation of the closed
operator A; it follows that the component A11 and the operator A11− I1 are closed in X1 .

If A is bounded, then both A01 and A11 are bounded. Denote by I1 the identity operator
on X1 . Then we have

index (A11− I) = index (diag(0,A11− I)

= index ((A− I)diag(0, I1))

= index (A− I)+ index (diag(0, I1))

= 0.

By ker(A11− I1) = {0} we have A11− I1 surjective. By the Closed Graph Theorem, it
follows that (A11− I1)

−1 is bounded and so A11− I1 has bounded inverse. Then A1 has no
spectrum near 1. From the decomposition (22) we get σ(A) = σ(I0)∪σ(A1) with σ(I0) =
{1}. So, if 1 ∈ σ(A) it is an isolated point of σ(A) of multiplicity dimker(A− I).

b. From our assumption it follows that σ(A)∩ ∂N = /0, and, actually, σ(As)∩ ∂N = /0
for s sufficiently small. Then

PN(As) := − 1
2πi

∫
∂N

(A−λ I)−1dλ

is a continuous family of projections. From T. Kato [26, Lemma I.4.10] we get

dimimPN(As) = dimimPN(A) < +∞ and PN(As)As ⊂ AsPN(As),

and from [26, Lemma III.6.17] we get σ(As)∩N = σ(PN(As)AsPN(As)). Since all operators
PN(As)AsPN(As) are unitary with respect to hs|imPN (As), it follows σ(PN(As)AsPN(As))⊂ S1 .

Thus, it follows that any h-unitary operator A with A− I Fredholm of index 0 has the
same spectral properties near |λ |= 1 as unitary operators in Hilbert space with the additional
property that 1 is an isolated point of the spectrum of finite multiplicity. This now permits
us to define the Maslov index in weak symplectic analysis.

3 Maslov index in weak symplectic analysis

Now we turn to the geometry of curves of Fredholm pairs of Lagrangian subspaces in weak
symplectic Banach space. We show how the usual definition of the Maslov index can be
suitably extended and derive basic and more intricate properties.
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3.1 Definition and basic properties of the Maslov index

Our data for defining the Maslov index are a continuous family {(X ,ωs,X+
s ,X−s )} of weak

symplectic Banach spaces with continuous splitting and a continuous family {(λs,µs)} of
Fredholm pairs of Lagrangian subspaces of {(X ,ωs)} of index 0. Our main task is defining
the involved “continuity”.

Definition 7 Let X be a fixed complex Banach space and {ωs} a family of weak symplectic
forms for X . Let (X ,ωs,X+

s ,X−s ) be a family of symplectic splittings of (X ,ωs) in the sense
of Definition 4.
(a) The family {(X ,ωs,X+

s ,X−s )}will be called continuous if the induced injective mappings
Js : X → X∗ are continuous as bounded operators, and the families {X±s } are continuous as
closed subspaces of X in the gap topology. Equivalently, we may demand that the family
{Ps} of projections

Ps : x+ y 7→ x, for x ∈ X+
s and y ∈ X−s ,

is continuous.

(b) Let {(X ,ωs,X+
s ,X−s )} be a continuous family of symplectic splittings and {(λs,µs)} a

continuous curve of Fredholm pairs of Lagrangian subspaces of index 0. Let Us : dom(Us)→
X−s , resp. Vs : dom(Vs)→ X−s be closed hs-unitary operators with G(Us) = λs and G(Vs) =
µs . We define the Maslov index of the curve {λs,µs} with respect to Ps by

Mas{λs,µs;Ps} := sf`
{( 0 Us

V−1
s 0

)}
, (23)

where V−1 denotes the algebraic inverse of the closed injective operator V and ` := (1−
ε,1+ ε) with suitable real ε > 0 and with upward co-orientation. The discussion around
Lemma 8 below shows that the spectral flow on the right side of (23) is always well-defined.

Remark 7 Let {(X ,ωs,X+
s ,X−s )} be a continuous family. A curve {λs} of Lagrangian sub-

spaces is continuous (i.e., {λs = G(Us} is continuous as a curve of closed subspaces of
X), if and only if the family {Ss,s0 ◦Us ◦ S−1

s,s0
} is continuous as a family of closed, gen-

erally unbounded operators in the space imPs0 . Here Us denotes the generating operator
Us : domUs→ X−s with G(Us) = λs (see Lemma 3); s0 ∈ [0,1] is chosen arbitrarily to fix the
domain of the family; and

Ss,s0 : imPs −→ imPs0

is a bounded operator with bounded inverse which is defined in the following way (see also
[26, Section I.4.6, pp. 33-34]):

Ss,s0 := S′s,s0
(I−R)−1/2 = (I−R)−1/2S′s,s0

,

where
R := (Ps−Ps0)

2 and S′s,s0
:= Ps0 Ps +(I−Ps0)(I−Ps).

We have the following lemma:

Lemma 8 Let (X ,ω) be a weak symplectic Banach space. Let ∆ denote the diagonal (i.e.,
the canonical Lagrangian) in the product symplectic space X �X := (X ,ω)⊕ (X ,−ω), and
λ ,µ are Lagrangian subspaces of (X ,ω). Then

(λ ,µ) ∈FL 2(X) ⇐⇒ (λ �µ,∆) ∈FL 2(X �X
)
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and
index (λ ,µ) = index (λ �µ,∆),

where λ �µ := {(x,y) | x ∈ λ ,y ∈ µ}.

Proof Clearly (λ �µ)∩∆ ' λ ∩µ , and λ �µ , ∆ are Lagrangian subspaces of X �X . Since

(λ �µ +∆) ∩ ({0}�X) ' {0}� (λ +µ),

we have λ +µ closed, if λ �µ +∆ is closed. Re-arranging

λ �µ +∆ = {(x,y)+(ξ ,ξ ) | x ∈ λ ,y ∈ µ,ξ ∈ X} = {(x,y) | x− y ∈ λ +µ}

proves the opposite implication. Moreover, we obtain λ �µ +∆ = ∆ +∆ ′
λ+µ

with ∆ ′
λ+µ

:=
{(x,−x) | x ∈ λ +µ}. So λ �µ +∆ is closed, if λ +µ is closed.

Setting, similarly, ∆ ′ := {(x,−x) | x ∈ X} yields

X �X
(λ �µ)+∆

=
∆ ⊕∆ ′

∆ ⊕∆ ′
λ+µ

' ∆ ′

∆ ′
λ+µ

' X
λ +µ

.

This proves our assertion.

Let (X ,ω) be a weak symplectic Banach space with a symplectic splitting (X ,ω,X+,X−)
and a corresponding projection P : X → X+. Let (λ ,µ) ∈FL 2(X). We denote the gener-
ating operators by U , respectively V . Then we have(

0 U
V−1 0

)
=

(
U 0
0 V−1

)(
0 IX+

IX− 0

)
,

and

G̃

(
U 0
0 V−1

)
= λ �µ, and G̃

(
0 IX−

IX+ 0

)
= ∆ ,

where G̃ denotes the graph of closed operators from imP to im(I−P) with P := P�
(I−P).

This leads to the following important result.

Proposition 4 Let {(X ,ωs)} be a continuous family of symplectic space for X with a con-
tinuous family of symplectic splittings (X ,ωs,X+

s ,X−s ) in the sense of Definition 7a and a
corresponding family of projections {Ps : X → X+

s }. Let {(λs,µs)} be a continuous curve in
FL 2(X). We denote the generating operators by Us, respectively Vs.

(a) If Vs is bounded and has bounded inverse for each s ∈ [0,1], then we have

Mas{λs,µs;Ps} = sf`{UsV−1
s }, (24)

where ` := (1− ε,1+ ε) with suitable real ε > 0 and with upward co-orientation.
(b) We have

Mas{λs �µs,∆ ;Ps} = Mas{λs,µs;Ps} (25)

= Mas{µs,λs; I−Ps} in (X ,−ωs) (26)

= Mas{∆ ,λs �µs; I−Ps} in (X ,−ωs)� (X ,ωs), (27)

where Ps := Ps � (I−Ps) .
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Proof By our assumption, we have

dimker(z2I−UsV−1
s ) = dimker

(
zI Us

V−1
s zI

)
,

for all z ∈ C. By definition, we have

Mas{λs,µs;Ps} = sf`
{( 0 Us

V−1
s 0

)}
= sf`{UsV−1

s }.

b. Let G̃ denote the graph of closed operators from imPs to im(I−Ps) . By (a), (b) and
c(i) we have

Mas{λs �µs,∆ ;Ps} = Mas
{
G̃

(
Us 0
0 V−1

s

)
,G̃

(
0 IX−s

IX+
s

0

)
;Ps

}
= sf`

{(Us 0
0 V−1

s

)(
0 IX+

s
IX−s 0

)}
= sf`

{( 0 Us
V−1

s 0

)}
= Mas{λs,µs;Ps}.

So (25) is proved. By the definition of the Maslov index we have (26). (27) follows from
(26) and (25).

From the properties of our general spectral flow, as observed at the end of our Appendix,
we get all the basic properties of the Maslov index (see S. E. Cappell, R. Lee, and E. Y. Miller
[17, Section 1] for a more comprehensive list).

Proposition 5 (a) The Maslov index is invariant under homotopies of curves of Fredholm
pairs of Lagrangian subspaces with fixed endpoints. In particular, the Maslov index is in-
variant under re-parametrization of paths.
(b) The Maslov index is additive under catenation, i.e.

Mas
{

λ1 ∗λ2,µ1 ∗µ2;Ps ∗Qs
}

= Mas
{

λ1,µ1;Ps
}
+Mas

{
λ2,µ2;Qs

}
,

where {λi(s)},{µi(s)}, i= 1,2 are continuous paths with λ1(1) = λ2(0), µ1(1) = µ2(0) and

(λ1 ∗λ2)(s) :=

{
λ1(2s), 0≤ s≤ 1

2 ,

λ2(2s−1), 1
2 < s≤ 1 ,

and similarly µ1 ∗µ2 and {Ps}∗{Qs} .
(c) The Maslov index is natural under symplectic action: let {(X ′,ω ′s)} be a second family
of symplectic Banach spaces and let

Ls ∈ Sp(X ,ωs;X ′,ω ′s) := {L ∈B(X ,X ′) | L invertible and ω
′
s(Lx,Ly) = ωs(x,y)},

such that {Ls} is a continuous family as bounded operators. Then, clearly, {X ′ = Ls(X+
s )⊕

Ls(X−s )} is a continuous family of symplectic splittings of {(X ′,ω ′s)} inducing projections
{Qs}, and we have

Mas{λs,µs;Ps} = Mas{Lsλs,Lsµs;Qs}.
(d) The Maslov index vanishes, if dimλs∩µs constant for all s ∈ [0,1].
(e) Flipping. We have

Mas{λs,µs;Ps}+Mas{µs,λs;Ps} = dimλ0∩µ0−dimλ1∩µ1.
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We can not claim that the Maslov index, Mas{λs,µs;Ps} is always independent of the
splitting projection Ps in general Banach space. However, we have the following result.

Proposition 6 Let {(X ,ωs)} be a continuous family of strong symplectic Banach spaces
(with fixed underlying Banach space X) and let {X = X+

s,t⊕X−s,t} be two continuous families
of symplectic splittings in the sense of Definition 7a with projections Ps,t : X → X+

s,t for
s ∈ [0,1] and t = 0,1. Let {(λs,µs)} be a continuous curve of Fredholm pairs of Lagrangian
subspaces of {(X ,ωs)}. Then
(a) index (λs,µs) = 0 for all s ∈ [0,1]; and
(b) Mas{λs,µs;Ps,0}= Mas{λs,µs;Ps,1} .

Note 1 Commonly, one assumes J2 =−I in strong symplectic analysis and defines the Mas-
lov index with respect to the induced decomposition. In view of Lemma 1, the point of the
preceding proposition is that the Maslov index is independent of the choice of the metrics.

Proof a. Using −iωs, we make (X ,ωs) into a symplectic Hilbert space and deform the met-
ric such that J2

s = −I. Clearly, the dimensions entering into the definition of the Fredholm
index do not change under the deformation. So, we are in the well-studied standard case.
b. We recall that our two families of symplectic splitting define two families of Hilbert
structures for X defined by

〈x,y〉s,t := −iωs(x+s,t ,y
+
s,t)+ iωs(x−s,t ,y

−
s,t)

for x = x+s,t + x−s,t ,y = y+s,t + y−s,t ,x
+
s,t ,y

+
s,t ∈ H+

s,t ,x
−
s,t ,y

−
s,t ∈ H−s,t , t = 0,1.

For any t ∈ [0,1] we define

〈x,y〉s,t := (1− t)〈x,y〉s,0 + t〈x,y〉s,1.

Then all (X ,〈·, ·〉s,t) are Hilbert spaces.
Define Js,t by ωs(x,y) = 〈Js,tx,y〉s,t and let X±s,t denote the positive (negative) space of

−iJs,t and Ps,t the orthogonal projection of X onto X+
s,t .

Then the two-parameter family {Js,t} is a continuous family of invertible operators;
{Ps,t} is continuous; and {H+

s,t} is continuous. So Mas{λs,µs;Ps,t} is well defined. So, by
homotopy invariance and additivity under catenation we obtain

Mas{λs,µs;Ps,0} = Mas{λs,µs;Ps,1}.

3.2 Comparison with the real (and strong) category

For fixed strong symplectic Hilbert space X , choosing one single Lagrangian subspace λ

yields a decomposition X = λ ⊕ Jλ . This decomposition was used in [7, Definition 1.5]
(see also [9, Theorem 3.1] and [24, Proposition 2.14]) to give the first functional analytic
definition of the Maslov index, though under the somewhat restrictive (and notationally quite
demanding) assumption of real symplectic structure. Up to the sign, our Definition 7b is a
true generalization of that previous definition. More precisely:

Let (H,ω) be a real symplectic Hilbert space with

ω(x,y) = 〈Jx,y〉, J2 = −I, Jt = −J.
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Clearly, we obtain a symplectic decomposition H+⊕H−=H⊗C with the induced complex
strong symplectic form ωC by

H± := {(I∓ iJ)ζ | ζ ∈ H}.

Now we fix one (real) Lagrangian subspace λ ⊂ H. Then there is a real linear isomor-
phism ϕ : H ∼= λ ⊗C defined by ϕ(x+Jy) = x+ iy for all x,y ∈ λ . For A = X +JY : H→H
with X ,Y : H→ H real linear and

X(λ )⊂ λ , Y (λ )⊂ λ , and XJ = JX , Y J = JY, (28)

we define

ϕ∗(A) := ϕ ◦A◦ϕ
−1 = X + iY, Aλ := X− JY, Atλ := X t + JY t ,

where X t ,Y t denotes the real transposed operators.

Lemma 9 Let (λ ,µ) be any pair of Lagrangian subspaces of H (in the real category). Let
Ṽ : H→H with Ṽ J = JṼ be a real generating operator for µ with respect to the orthogonal
splitting H = λ ⊕Jλ , i.e., µ = Ṽ (Jλ ) and ϕ∗(Ṽ ) is unitary. Let U,V : H+→H− denote the
unitary generating operators for λ ⊗C and µ⊗C, i.e., we have

λ ⊗C = G(U) and µ⊗C = G(V ).

Then we have VU−1 = −Sλ (Ṽ ), where Sλ (Ṽ ) := ϕ∗(Ṽ )ϕ∗
(
Ṽ tλ
)

is the complex generating
operator for µ ⊗C with respect to λ , as defined by J. Leray in [28, Section I.2.2, Lemma
2.1] and elaborated in the preceding references.

Proof We firstly give some notations used later. For ζ = x+Jy ∈H with x,y ∈ λ we define
ζ λ := ϕ−1

(
ϕ(ζ )

)
= x− Jy. Moreover, for A = X + JY : H → H with X ,Y : H → H real

linear with (28), we define S̃λ (A) := AAtλ . Then we have Sλ (A) = ϕ∗
(
S̃λ (A)

)
.

Now we give explicit descriptions of U and V . It is immediate that U takes the form

U : H+ −→ H−

(I− iJ)ζ 7→ (I + iJ)ζ λ .

By the definition of Ṽ , we have

µ = Ṽ (Jλ ) = {2Ṽ Jx+2iṼ Jy | x,y ∈ λ}.

We shall find V : (I− iJ)ζ 7→ (I + iJ)ζ1 with ζ ,ζ1 ∈ H such that G(V ) = µ ⊗C, i.e., we
shall find ζ1 to ζ = x+ Jy such that

(I− iJ)ζ +(I + iJ)ζ1 = 2Ṽ Jx+2iṼ Jy for all x,y ∈ λ . (29)

Comparing real and imaginary part of (29) yields ζ +ζ1 = 2Ṽ Jx and−iJ(ζ −ζ1) =−iṼ Jy,
so

ζ = Ṽ (Jx− y) and ζ1 = Ṽ (Jx+ y).

From the left equation we obtain ζ λ =−Ṽ λ (Jx+y). Since ϕ∗(Ṽ ) is unitary, we obtain from
the right side

ζ1 = Ṽ (Jx+ y) = −ṼṼ
−1
λ ζ λ = −ṼṼ t

ζ λ = −S̃λ (Ṽ )ζ λ .
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This gives
V : H+ −→ H−

(I− iJ)ζ 7→ −(I + iJ)S̃λ (Ṽ )ζ λ .

So for all z1 := (I + iJ)ζ1 with ζ1 ∈ H, we have

VU−1z1 = −(I + iJ)S̃λ (Ṽ )ζ1

= −S̃λ (Ṽ )(I + iJ)ζ1

= −S̃λ (Ṽ )(I− iJ)ϕ(ζ )

= −ϕ∗(S̃λ (Ṽ ))(I− iJ)ϕ(ζ )

= −Sλ (Ṽ )(I + iJ)ζ1

= −Sλ (Ṽ )z1.

That is, VU−1 =−Sλ (Ṽ ).

With the preceding notation, we recall from [7, Definition 1.5] the definition of the
Maslov index

MasBF{µs,λ} := sf`′{Sλ (Ṽs)} (30)

of a continuous curve {µs} of Lagrangian subspaces in real symplectic Hilbert space H
which make Fredholm pairs with one fixed Lagrangian subspace λ . Here `′ :=(−1−ε,−1+
ε) with downward orientation.

Corollary 2
Mas{λ ⊗C,µs⊗C} = −MasBF{µs,λ}.

Proof Let `,`′ denote small intervals on the real line close to 1, respectively -1 and give
` the co-orientation from −i to +i and `′ vice versa. We denote by `− the interval ` with
reversed co-orientation. Then by our definition in 23, elementary transformations, the pre-
ceding lemma, and the definition recalled in (30):

Mas{λ ⊗C,µs⊗C} = −sf`{UV−1
s } = −sf`−{VsU−1}

= −sf`−{−Sλ (Ṽs)} = −sf`{−Sλ (Ṽs)}

= −sf`′{Sλ (Ṽs)} = −MasBF{µs,λ}.

3.3 Invariance of the Maslov index under embedding

We close this subsection by discussing the invariance of the Maslov index under embedding
in a larger symplectic space, assuming a simple regularity condition.

Lemma 10 Let {(X ,ωs,X+
s ,X−s )} be a continuous family of symplectic splittings for a

fixed (complex) Banach space X and {(λs,µs) ∈ FL 2(X ,ωs)} a continuous curve with
index (λs,µs) = 0 for all s∈ [0,1]. Let Y be a second Banach space with a linear embedding
Y ↪→ X (in general neither continuous nor dense). We assume that

ω̃s := ωs|Y×Y and Y±s := X±s ∩Y.



23

yields also a continuous family {(Y, ω̃s,Y+
s ,Y−s )} of symplectic splittings. Moreover, we as-

sume that dimλs ∩ µs− dimλs ∩ µs ∩Y is constant and (λs ∩Y,µs ∩Y ) ∈FL 2(Y, ω̃s) of
index 0 for all s, and that the pairs make also a continuous curve in Y . Then we have

Mas{λs,µs;Ps} = Mas{λs∩Y,µs∩Y ; P̃s},

where Ps and P̃s denote the projections of X onto X+
s along X−s and the projections of Y onto

Y+
s along Y−s respectively.

The lemma is an immediate consequence of Lemma 17 of the Appendix.

Acknowledgements We would like to thank Prof. K. Furutani (Tokyo), Prof. M. Lesch (Bonn) and Prof. R.
Nest (Copenhagen) for inspiring discussions about this subject and BS H. Larsen (Roskilde) for drawing the
figures of the Appendix.

A Spectral flow

The spectral flow for a one parameter family of linear self-adjoint Fredholm operators was introduced by M.
Atiyah, V. Patodi, and I. Singer [4] in their study of index theory on manifolds with boundary. Since then other
significant applications have been found. Later this notion was made rigorous for curves of bounded self-
adjoint Fredholm operators in J. Phillips [32] and for continuous curves of self-adjoint (generally unbounded)
Fredholm operators in Hilbert space in [10] by Cayley transform. The notion was generalized to higher
dimensional case in X. Dai and W. Zhang [21], and to more general operators in [38,41,43].

For manifolds with singular metric, there may appear linear relations (cf. C. Bennewitz [5] and M. Lesch
and M. Malamud [29]). It is well known that many statements on relations can be translated into those on the
resolvents in the realm of operator theory, see, e.g., B. M. Brown, G. Grubb, and I. G. Wood [15]. It seems
to us, however, that this translation can not always be made globally, i.e., not for a whole curve of relations.

In this Appendix we shall provide a rigorous definition of the spectral flow of spectral-continuous curves
of admissible closed linear relations in Banach space relative to a co-oriented real curve ` ⊂ C. (All the
preceding terms will be explained).

A.1 Gap between subspaces

Let S (X) denote the set of all closed subspaces of a Banach space X .

The gap topology

The gap between subspaces M,N ∈S (X) is defined in [26, Section IV.2.1]:

δ̂ (M,N) := max{δ (M,N),δ (N,M)}, (1)

where δ (M,N) := sup{dist(x,N) | x ∈M,‖x‖ = 1}, δ (M,{0}) := 1 for M 6= {0}, and δ ({0},N) := 0. The
sets U(M,ε) = {N ∈S (X) | δ (M,N)< ε}, where M ∈S (X) and ε > 0, form a basis for the so-called gap
topology on S (X). This is a complete metrizable topology on S (X) [26, Section IV.2.1].

Let X be a Hilbert space. Then the gap between closed subspace M,N is a metric for S (X) and can be
calculated by

δ̂ (M,N) = ‖PM−PN‖, (2)

where PM ,PN denote the orthogonal projections of X onto M,N respectively, [26, Theorem I.6.34].
We have the following lemmata.

Lemma 11 Let X be a Hilbert space, and Y be a closed linear subspace of X. Then the mapping M 7→M+Y
induces a bijection from the space S (X ,Y ) of closed linear subspaces of X containing Y onto the space
S (X/Y ) = S (Y⊥) of closed linear subspaces of X/Y , which preserves the metric.
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Proof We view X/Y as Y⊥. Let M,N ⊂Y⊥ be two closed subspaces and PM ,PN be the orthogonal projections
onto M, N respectively. Then we have

δ̂ (M+Y,N +Y ) = ‖PM+Y −PN+Y ‖ = ‖PM−PN‖ = δ̂ (M,N).

Uniform properties

In general, the distances δ (M,N) and δ (N,M) can be very different and, worse, behave very differently under
small perturbations. However, for finite-dimensional subspaces of equal dimension (and in Hilbert space) we
can estimate δ (M,N) by δ (N,M) in a uniform way.

Lemma 12 Let X be a Hilbert space and M,N be two subspaces with dimM = dimN = n ∈N. If δ (N,M)<
1√
n , then we have

δ (M,N)≤
√

nδ (N,M)

1−
√

nδ (N,M)
. (3)

Proof Let y1, . . . ,yn be an orthonormal basis of N. Let xk ∈M denote the vectors with ‖xk−yk‖= dist(yk,M).
Then ‖xk− yk‖ ≤ δ (N,M).

For any a1, . . . ,an ∈ C, set x = ∑
n
k=1 akxk . Then we have

‖x‖ = ‖
n

∑
k=1

akyk +
n

∑
k=1

ak(xk− yk)‖ ≥ ‖
n

∑
k=1

akyk‖−
n

∑
k=1
|ak|‖xk− yk‖

≥ (
n

∑
k=1

a2
k)

1
2 −

n

∑
k=1
|ak|δ (N,M)≥ (1−

√
nδ (N,M))(

n

∑
k=1

a2
k)

1
2 . (4)

If x = 0, by (4) we have ak = 0. Thus x1, . . . ,xn are linearly independent and therefore they form a basis of M.
For any x ∈M with ‖x‖= 1, let y = ∑

n
k=1 akyk . By (4) we have

‖x− y‖ = ‖
n

∑
k=1

ak(xk− yk)‖ ≤
n

∑
k=1
|ak|δ (N,M)≤

√
nδ (N,M)

1−
√

nδ (N,M)
.

Hence we have (3).

Clearly, taking the sum of two closed subspaces is not a continuous operation, in general, but becomes
continuous when fixing the dimension of the intersection and keeping the sum closed.

The following Lemma is well-known and the proof is omitted.

Lemma 13 Let X ,Y be two Hilbert space and As ∈ B(X ,Y ) be a continuous family of semi-Fredholm
bounded operators (continuous in the operator norm). If dimkerAs is constant, then kerAs ∈ S (X) and
imAs ∈S (Y ) are continuous families of closed subspaces (continuous in the gap norm).

We recall the notion of semi–Fredholm pairs: Let M,N ∈S (X). The pair M,N is called (semi-)Fredholm
if M+N is closed in X , and both of (one of) the spaces M∩N and dimX/(M+N) are (is) finite dimensional.
In this case, the index of (M,N) is defined by

index (M,N) := dimM∩N−dimX/(M+N) ∈ Z∪{−∞,∞}. (5)

Note that by [8, Remark A.1] (see also [26, Problem 4.4.7]), X/(M+N) of finite dimension implies M+N ∈
S (X).

Proposition 7 Let X be a Hilbert space and n ∈ N. Denote by S F 2
1,n(X) (respectively S F 2

2,n(X)) the set
of semi-Fredholm pairs (M,N) of closed subspaces with dimM∩N = n (respectively dimX/(M +N) = n).
Then the following four natural mappings ϕk,l : S F 2

l,n(X)→S (X), k, l = 1,2 are continuous:

ϕ1,l(M,N) := M∩N, ϕ2,l(M,N) := M+N.

Proof (Communicated by R. Nest) Let (M,N) ∈S (X)×S (X). Let PM and PN denote the orthogonal pro-
jections of X onto M and N respectively. Then we have

imPM + imPN = im((I−PN)PM)+ imPN

and the kernel of (I−PN)PM ∈B(imPM ,kerPN) is M∩N. So M+N is closed if and only if im((I−PN)PM)
is closed. By Lemma 13, the maps ϕk,1, k = 1,2 are continuous. Recall that taking orthogonal complements
is continuous. Then ϕk,2 is continuous by the fact that

ϕk,2(M,N) =
(
ϕ3−k,1(M⊥,N⊥)

)⊥
, k = 1,2.



25

A.2 Closed linear relations

This subsection discusses some general properties of closed linear relations. For additional details, see Cross
[20].

Basic concepts of closed linear relations

Let X ,Y be two vector spaces. A linear relation A between X and Y is just a linear subspace of X ×Y . As
usual, the domain, the range, the kernel and the indeterminant part of A is defined by

dom(A) = {x ∈ X | there exists y ∈ Y such that (x,y) ∈ A},
imA = {y ∈ Y | there exists x ∈ X such that (x,y) ∈ A},
kerA = {x ∈ X | (x,0) ∈ A},
A(0) = {y ∈ Y | (0,y) ∈ A},

respectively.
Let X ,Y,Z be three vector spaces. Let A,B be linear relations between X and Y , and C a linear relation

between Y and Z. We define A+B and CA by

A+B = {(x,y+ z) ∈ X×Y | (x,y) ∈ A,(y,z) ∈ B} (6)

CA = {(x,z) ∈ X×Z | ∃y ∈ Y such that (x,y) ∈ A,(y,z) ∈C}. (7)

Definition 8 Let X ,Y be two Banach spaces. A closed linear relation between X ,Y is a closed linear sub-
space of X×Y . We denote by C LR(X ,Y ) = S (X×Y ) and C LR(X) = S (X×X).

Note that a linear relation A between X ,Y is a graph of a linear operator if and only if A(0) = {0}. In
this case we shall still denote the corresponding operator by A. After identifying an operator and its graph,
we have the inclusions

B(X ,Y )⊂ C (X ,Y )⊂ C LR(X ,Y ).

Let A be a linear relation between X ,Y . The inverse A−1 of A is a always defined. It is the linear relation
between Y,X defined by

A−1 = {(y,x) ∈ Y ×X ;(x,y) ∈ A}. (8)

Definition 9 Let X ,Y be two Banach spaces and A ∈ C LR(X ,Y ).

(i) A is called Fredholm, if dimkerA < +∞, imA is closed in Y and dimY/ imA < +∞. In this case, we
define the index of A to be

index (A) = dimkerA−dimY/ imA. (9)

(ii) X ,Y is called bounded invertible, if A−1 ∈B(Y,X).

Lemma 14 (a) A is Fredholm, if and only if the pair (A,X ×{0}) is a Fredholm pair of closed subsets of
X×Y . In this case, index (A) = index (A,X×{0}).
(b) A is bounded invertible, if and only if X×X is the direct sum of A and X×{0}.

Proof Our results follow from the fact that

A∩ (X×{0}) = kerA×{0},
A+X×{0} = {0}× im(A)+X×{0}.

Spectral projections of closed linear relations

Definition 10 Let X be a Banach space and A ∈ C LR(X). Let ζ be a complex number. ζ is called a regular
point of A if A−ζ I is bounded invertible. Otherwise ζ is called a spectral point of A. We denote the set of all
spectral points of A by σ(A) and the set of all regular points of A by ρ(A). The resolvent of A is defined by

R(ζ ,A) = (A−ζ I)−1, ζ ∈ ρ(A). (10)
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Let X be a Banach space, and A∈C LR(X). Let N ⊂C be a bounded open subset. Assume that σ(A)∩∂N
is a finite set. Then there exists an open subset Ñ ⊂ N such that

Ñ ⊂ N, ∂ Ñ ∈C1, σ(A)∩ Ñ = σ(A)∩N, and σ(A)∩∂ Ñ = /0, (11)

and the spectral projection

PN(A) := − 1
2πi

∫
∂ Ñ

(A−ζ I)−1dζ (12)

is well-defined and does not depend of the choice of Ñ. We have the following lemma (cf. [26, Theorem
III.6.17]):

Lemma 15 (a) We have

PN(A)A⊂ APN(A) = PN(A)APN(A)+{0}×A(0), (13)

where the composition is taken in the sense of (7).
(b) We have

PN(A)APN(A) = − 1
2πi

∫
∂ Ñ

ζ (A−ζ I)−1dζ . (14)

(c) If we view PN(A)APN(A) as a linear relation on im(PN(A)), then we have PN(A)APN(A)∈B(im(PN(A))),
and

σ(A)∩N = σ
(
PN(A)APN(A)

)
. (15)

Proof Let z ∈ N \ Ñ be a regular point. Then we have

PN(A)R(z,A) = R(z,A)PN(A) =−
1

2πi

∫
∂ Ñ

(z−ζ )−1(A−ζ I)−1dζ .

Since R(z,A) is bounded and 0 6= (z−ζ )−1 for all ζ ∈ σ(A)∩ Ñ, we have kerR(z,A) = A(0)⊂ ker(PN(A)).
Then our results follow form the corresponding results for R(z,A).

A.3 Spectral flow for closed linear relations.

Firstly we give the definition of admissible relations.

ℓ ℓ
λ0

ℓ

Fig. 1 Upper left: Closed linear relation with admissible spectrum with respect to `. Upper right: Admissible
spectrum with λ0 ∈ `\ ` . Bottom: Non-admissible spectrum since σ(A)∩N 6= σ(A)∩ ` and dimimPN(A) =
+∞, each inflicting (16)(i) and (ii)
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Definition 11 (Cf. Zhu [40, Definition 1.3.6], [41, Definition 2.1], and [43, Definition 2.6]). Let ` ⊂ C be
a C1 real 1-dimensional submanifold which has no boundary and is co-oriented (i.e., with oriented normal
bundle). Let X be a Banach space and A ∈ C LR(X) be a closed linear relation.
(a) We call A admissible with respect to `, if there exists a bounded open subset N of C (called test domain)
such that (see also Fig. 1)

(i) σ(A)∩N = σ(A)∩ ` and (ii) dimimPN(A)<+∞ (16)

Then PN(A) does not depend on the choice of such a test domain N. We set

P̀ (A) := PN(A) and ν`(A) := dimimPN(A). (17)

For fixed ` and X we shall denote the space of all `-admissible closed linear relations in X by A`(X).

(b) Let A ∈A`(X). Let N ⊂ C be open and bounded with C1 boundary. We set N0 = N∩ ` and assume

N0 = N∩ `,σ(A)∩ `⊂ N,σ(A)∩∂N = /0, and dimimPN(A)<+∞. (18)

Moreover, we require that each connected component of N has connected intersection with ` so that the
disjoint positive (negative) part N± of N with respect to the co-orientation of ` is well-defined, and we have
a disjoint union N = N+ ∪N0 ∪N−. We shall call the resulting triple (N;N+,N−) admissible with respect to
` and A, and write (N;N+,N−) ∈A`,A. See also Fig. 2

ℓ

N−
1

N+
1

N+
2

N−
2

ℓ ℓ

ℓ ℓ

Fig. 2 Top: Admissible test domain triple (N,N+,N−). Middle and bottom: Non-admissible test domain
triples. Middle left: σ(A)∩ ∂N 6= /0 . Middle right: dimPN(A) = +∞ . Bottom left: No distinct orientation.
Bottom right: N∩ ` not connected while N connected

Now we are able to define spectral-continuity and the spectral flow. Our data are a co-oriented curve
`⊂ C, a family of Banach spaces {Xs}s∈[a,b] and a family {As}s∈[a,b] of closed linear relations on Xs .
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ℓ

ℓ ℓ

Fig. 3 The hedging of the spectra of a spectral-continuous family near ` at s0 : The same test domain triple
(N,N+,N−) (solid line) works at s0 in the upper figure, at s0−ε in bottom left, and at s0 +ε in bottom right.
The sub-triple (N′,N′+,N′−) (encircled by the broken line) will also work at s0 and for s0− ε , but only for
s0 + ε ′ with ε ′� ε

Definition 12 (a) We shall call the family {As} ∈A`(Xs), s ∈ [a,b] spectral-continuous near ` at s0 ∈ [a,b],
if there is an ε(s0)> 0 such that for all ε ′ ∈ (0,ε(s0)) there exists a triple (N;N+,N−) such that

(N;N+,N−) ∈ A`,As for all |s− s0|< ε
′;

and for all triple (N′;N′+,N′−) ∈A`,As0
with N′ ⊂ N, and N′± ⊂ N±, we have

(N′;N′+,N′−) ∈ A`,As for all |s− s0| � 1;

and dimimPN′ (As) and dimimPN±\N′± (As) do not depend on s. See also Fig. 3 and Fig. 4.

ℓ ℓ

Fig. 4 A globally spectral-continuous curve of closed linear relations with admissible spectra may fail to
become spectral-continuous near ` due to a spectral point λ0 ∈ ` \ ` for s0 (left), which moves inward on `
for s = s0± ε (right)

We shall call the family {As} ∈A`(Xs), s ∈ [a,b] spectral-continuous near `, if it is spectral-continuous near
` at s0 for all s0 ∈ [a,b].

(b) Let {As} ∈A`, s ∈ [a,b] be a family of admissible operators that is spectral-continuous near `. Then there
exist a partition

a = s0 ≤ t1 ≤ s1 ≤ . . .sn−1 ≤ tn ≤ sn = b (19)

of the interval [a,b], such that sk−1,sk ∈ (tk − ε(tk), tk + ε(tk)), k = 1, . . . ,n. Let (Nk;N+
k ,N−k ) be like a

(N;N+,N−) in (a) for tk and some ε ′ ∈ (0,ε(s0)) such that sk−1,sk ∈ (tk − ε ′, tk + ε ′), k = 1, . . . ,n. Then
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we define the spectral flow of {As}a≤s≤b through ` by

sf`
{

As;a≤ s≤ b
}

:=
n

∑
k=1

(
dimim

(
PN−k

(Ask−1 )
)
−dimim

(
PN−k

(Ask )
))

. (20)

When ` is a bounded open submanifold of iR containing 0 with co-orientation from left to right, we set

sf
{

As;a≤ s≤ b
}

:= sf`
{

As;a≤ s≤ b
}
.

Lemma 16 Something new.

Note that for a family of
{

As ∈ A`(Xs)
}

, we always obtain a spectral-continuous family, when we are
given a suitable family of transformations Ts,s0 : Ys→ Ys0 such that the family

Ts,s0 AsT−1
s,s0
∈ C (Ys0 )

is continuously varying.
From our assumptions it follows that the spectral flow is independent of the choice of the partition (19)

and admissible (Nk;N+
k ,N−k ), hence it is well-defined. From the definition it follows that the spectral flow

through ` is path additive under catenation and homotopy invariant. For details of the proof, see [32] and
[43].

We close the appendix by discussing the invariance of the spectral flow under embedding in a larger
space, assuming a simple regularity condition.

Lemma 17 Let {Ys;s ∈ [a,b]} and {Xs;s ∈ [a,b]} be two families of (complex) Banach spaces with Xs ⊂ Ys
(no density or continuity of the embeddings assumed). Let {As ∈C LR(Ys);s∈ [a,b]} be a spectral-continuous
curve near a fixed co-oriented curve `⊂ C. We assume that As(Xs)⊂ Xs for all s and that the curve {As|Xs ∈
C LR(Ys);s ∈ [a,b]} is also spectral-continuous near `. Then we have

sf`{As;s ∈ [a,b]} = sf`{As|Xs ;s ∈ [a,b]}

if the difference dimν`(As)−dimν`(As|Xs ), s ∈ [a,b], is constant.

Proof We go back to the local definition of sf` and reduce to the finite-dimensional case. Denote by m the
constant in our assumption. Let s0 ∈ [a,b]. Choose a triple

(N1;N+
1 ,N−1 ) ∈A`,As0

such that N1 satisfies (16) for As0 . Then by spectral-continuity, there exists a triple (N;N+,N−) with N ⊂ N1
with

(N;N+,N−) ∈A`,As for |s− s0| � 1.
Then we have, again for |s− s0| � 1

dimimPN(As) = ν`(As0 ) = ν`(As|Xs0
)+m = dimimPN(As|Xs )+m (21)

by spectral-continuity and our assumption. Now we consider for each λ ∈ C∩N the algebraic multiplicities
and find

dimker(As|Xs −λ I|Xs )
k ≤ dimker(As−λ I)k (22)

for each k ∈ N. Comparing

dimimPN(As) = ∑
λ∈σ(As)∩N

∑
k∈N

dimker(As−λ I)k and

dimimPN(As|Xs ) = ∑
λ∈σ(As|Xs )∩N

∑
k∈N

dimker(As|Xs −λ I|Xs )
k

we obtain from equation (21) and the inequalities (22) that

dimker(As|Xs −λ I|Xs )
k = dimker(As−λ I)k

for each λ ∈ N \ ` and k ∈ N. So

σ(As)∩ (N \ `) = σ(As|Xs )∩ (N \ `);

and the algebraic multiplicities with respect to As and As|Xs coincide in each point. By the definition of the
spectral flow, the two spectral flows must coincide.
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16. J. BRÜNING AND M. LESCH, On boundary value problems for Dirac type operators. I. Regularity and

self-adjointness, J. Funct. Anal. 185 (2001), 1–62, arXiv:math.FA/9905181.
17. S.E. CAPPELL, R. LEE, AND E.Y. MILLER, On the Maslov index, Comm. Pure Appl. Math. 47 (1994),

121–186.
18. —, —, —, Selfadjoint elliptic operators and manifold decompositions Part II: Spectral flow and Maslov

index, Comm. Pure Appl. Math. 49 (1996), 869–909.
19. P.R. CHERNOFF AND J.E. MARSDEN, Properties of Infinite Dimensional Hamiltonian Systems, LNM

425, Springer-Verlag, Berlin, 1974.
20. R. CROSS, Multivalued Linear Operators, Dekker Inc., New York, 1998.
21. X. DAI AND W. ZHANG, Higher spectral flow, J. Funct. Anal. 157 (1998), 432–469.
22. J.J. DUISTERMAAT, On the Morse index in variational calculus, Adv. Math. 21 (1976), 173–195.
23. A. FLOER, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988), 393–

407.
24. K. FURUTANI AND N. OTSUKI, Maslov index in the infinite dimension and a splitting formula for a

spectral flow, Japan. J. Math. 28/2 (2002), 215–243.
25. M. DE GOSSON, The Principles of Newtonian and Quantum Mechanics - With a Forword by Basil Hiley,

Imperial College / World Scientific Publishing Co., London–Singapore, 2001.
26. T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966, 2d ed., 1976.
27. P. KIRK AND M. LESCH, The η–invariant, Maslov index, and spectral flow for Dirac–type operators on

manifolds with boundary, Forum Math. 16 (2004), 553–629, arXiv:math.DG/0012123.
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