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Abstract
Legumes are a highly diverse angiosperm family that include many agriculturally important

species. To date, 21 complete chloroplast genomes have been sequenced from legume

crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome

from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume

genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted re-

peats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata
lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly

different in terms of gene and repeat content. The key feature is its highly divergent clpP1
gene, normally considered essential in chloroplast genomes. In A. ligulata, although tran-

scribed and spliced, it probably encodes a catalytically inactive protein. This study provides

a significant resource for further genetic research into Acacia and the Mimosoideae. The di-

vergent clpP1 gene suggests that Acacia will provide an interesting source of information

on the evolution and functional diversity of the chloroplast Clp protease complex.

Introduction
The Leguminosae (Fabaceae) are a large and economically important family of flowering
plants. The family is separated into a number of subfamilies, with Papilionoideae and Mimo-
soideae being the most species-rich. The Papilionoideae has been the best studied of these sub-
families due to the fact that it includes a large number of agriculturally important species, such
as soybean (Glycine max L.), chickpea (Cicer arietinum L.), the common bean (Phaseolus vulga-
ris L.) and mungbean (Vigna radiata L.).

The Mimosoideae includes genera such asMimosa, Inga and Acacia. The genus Acacia
(sensu stricto) is found across tropical, subtropical, warm temperate and arid climates. It occurs
predominantly in Australia, although several species also occur in Southeast Asia and
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Madagascar [1]. With over 1,000 species, Acacia is the largest angiosperm genus in Australia
[2]. Acacia species play an important ecological role both as a dominant component of many
vegetation classes in Australia [3], particularly in the arid/semi-arid interior, and also interna-
tionally as invasive species [4–6]. Many Austalian acacias are also important sources of wood
and wood products and are widely grown in the tropics and sub-tropics [7]. Previous genetic
research on Acacia has focused largely on informing conservation and agro-forestry manage-
ment, for example by identifying provenances for seed sourcing [8], examining mating systems
and the level and distribution of genetic variation within species [9–11], establishing phylogeo-
graphic patterns [12], enhancing species identification through DNA barcoding [6, 13], and
clarifying species relationships in phylogenetic studies [14–19].

In recent years, the benefits of whole genome sequencing to conservation and restoration
genetics have become increasingly clear. These benefits include large-scale development of
both neutral and adaptive markers and larger datasets for increased phylogenetic resolution
[20–23]. Prior to the development of next-generation sequencing technologies, the time and
cost associated with sequencing an entire genome was impractical for non-model species.
However, in the last decade, the development of high throughput technologies has made whole
genome sequencing increasingly practical and cost-effective, notably via high-throughput shal-
low sequencing of total DNA [24, 25].

To date, approximately 530 complete chloroplast genomes have been sequenced (see http://
www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=2759&opt = plastid), with 21 of
these belonging to the Leguminosae (all 21 are Papilionoideae). The typical chloroplast genome
comprises two inverted repeats (IRs) separated by a small single copy (SSC) and a large single
copy (LSC) region [26]. In general, chloroplast genomes range in size from 120-160-kb and in-
clude 120–130 genes, many of which are essential for photosynthesis. The chloroplast’s role in
photosynthesis has resulted in these features being highly conserved [27–29].

Compared to this typical chloroplast genome, many Papilionoideae chloroplast genomes
display significant rearrangements, including the inversion of a 50-kb region of the LSC [30,
31], and the loss of one inverted repeat copy [32]. These features, as well as transfer of the rpl22
gene to the nucleus [33, 34], and intron loss in the clpP and rps12 genes [35, 36], have been well
studied and their presence/absence mapped onto the current Leguminosae phylogeny [36].

Unlike Papilionoideae, Mimosoideae appears to display neither loss of the inverted repeat
[37], nor the 50-kb inversion [30], however, no complete Mimosoideae chloroplast genomes
have yet been sequenced. Here we report the complete chloroplast genome sequence of Acacia
ligulata, a widespread species found throughout arid and semi-arid Australia. We discuss the
chloroplast genome structure of A. ligulata including its gene content, inverted repeat organisa-
tion and repeat structure, and compare these with other legume chloroplast genomes. We also
investigated the functionality of the A. ligulata clpP1 gene by exploring the transcript’s ability
to be spliced, and the conservation of the catalytic triad.

Results and Discussion

Sequencing and assembly
Dried herbarium material of a specimen of Acacia ligulata Benth. was used for DNA extraction.
Illumina sequencing of a library prepared from total DNA produced 2,216,882 paired-end
reads with a read length of 100 nt. 5.26% of reads were assembled into 23 contigs showing ho-
mology to legume plastid DNA. Gaps between contigs were then filled by PCR amplification
and Sanger sequencing. The complete assembled chloroplast genome of A. ligulata is typical in
its general structure with a pair of IRs of 25,925 bp, an LSC of 88,576 bp and an SSC of 18,298
bp (Fig 1). Thus, unlike the chloroplast genomes of many of the Papilionoideae, the A. ligulata
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genome has inverted repeats and no inversions within the LSC. The total size of the A. ligulata
chloroplast genome is 158,724 bp, 49.4% of which is non-coding DNA. The GC content for the

Fig 1. Genome Map of the Acacia ligulataChloroplast.Genes shown on the inside of the circle are transcribed in the clockwise direction and those shown
on the outside of the circle are transcribed in the anticlockwise direction. Genes marked with an asterisk contain introns, with the introns indicated by clear
boxes. The legend indicates the functional group to which each gene belongs. The figure was generated with OrganelleGenomeDRAW [79].

doi:10.1371/journal.pone.0125768.g001
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whole genome is 36.2%, while that of the protein-coding, rRNA and tRNA genes is 37.4%,
55.3% and 53.2%, respectively. These values are similar to those in other Leguminosae genomes
(see Table 1 for those used in our comparisons).

Genome content and order
The A. ligulata chloroplast genome contains 109 unique genes, including 76 unique protein-
coding genes, 4 unique rRNA genes and 29 unique tRNA genes. As is seen throughout the
Leguminosae, the rpl22 gene is absent from the A. ligulata plastid genome following an ancient
transfer to the nuclear genome [33]. The inverted repeat of the A. ligulata chloroplast genome
results in the complete duplication of the rpl2, rpl23, ycf2, ndhB and rps7 genes, as well as exons
1 and 2 of rps12, all four rRNA genes and seven tRNA genes. As is also seen in those Legumino-
sae species that retain their inverted repeat, the IR of the A. ligulata chloroplast runs roughly
450 bp into the ycf1 gene. This feature has been shown to distinguish legume chloroplasts from
many other angiosperms, which typically have 1,000 bp or more of the ycf1 gene included in
their IR [38]. Of those legumes that do retain the inverted repeat, that of A. ligulata is larger
than in Lupinus, Glycine, Lotus andMillettia, but smaller than in Phaseolus and Vigna (Fig 2).
The rps19 gene of A. ligulata is found partially within the IR, with 101 bp being repeated. This
is consistent with Glycine and Lotus that also display partial duplication of the rps19 gene.

Table 1. GenBank Accession Numbers and References for All Taxa Used in the Phylogenetic and Genomic Comparison of Acacia ligulata.

Species Family GenBank accession Genome size (bp) Reference

Cicer arietinum Leguminosae NC_011163 125,319 [36]

Glycine canescens Leguminosae KC893635 152,518 Unpub.

Glycine cyrtoloba Leguminosae KC893632 152,381 Unpub.

Glycine dolichocarpa Leguminosae KC893636 152,804 Unpub.

Glycine falcata Leguminosae KC563637 153,023 Unpub.

Glycine max Leguminosae NC_007942 152,218 [38]

Glycine soja Leguminosae KF611800 152,217 Unpub.

Glycine stenophita Leguminosae KC893634 152,618 Unpub.

Glycine syndetika Leguminosae KC893638 152,783 Unpub.

Glycine tomentella Leguminosae KC893633 152,728 Unpub.

Lathyrus sativus Leguminosae NC_014063 121,020 [34]

Lotus japonicus Leguminosae AP002983 150,519 [39]

Lupinus luteus Leguminosae NC_014063 151,894 [40]

Medicago truncatula Leguminosae NC_003119 124,033 Unpub.

Millettia pinnata Leguminosae NC_016708 152,968 [41]

Phaseolus vulgaris Leguminosae NC_009259 150,285 [42]

Pisum sativum Leguminosae NC_014057 122,169 [34]

Trifolium subterraneum Leguminosae EU849487 144,763 [43]

Vigna angularis Leguminosae AP012598 151,683 Unpub.

Vigna radiata Leguminosae NC_013843 151,271 [44]

Vigna unguiculata Leguminosae JQ755301 152,415 Unpub.

Pyrus pyrifolia Maleae NC_015996 159,922 [45]

Morus indica Moraceae DQ226511 158,484 [46]

Castanea mollissima Fagaceae NC_014674 160,799 [47]

Cucumis sativus Cucurbitaceae DQ119058 155,527 [48]

Eucalyptus globulus Myrtaceae KC180787 160,267 [49]

doi:10.1371/journal.pone.0125768.t001

Acacia ligulataChloroplast Genome

PLOSONE | DOI:10.1371/journal.pone.0125768 May 8, 2015 4 / 19



However, this feature varies throughout the Leguminosae, with the duplication of the entire
gene in Phaseolus and Vigna, while rps19 is not within the IR forMillettia and Lupinus.

Eleven protein-coding genes and seven tRNA genes contained at least one intron, with
clpP1, rps12 and ycf3 each containing two introns. This is in contrast to Cicer arietinum,Medi-
cago truncatula, Trifolium subterraneum, Pisum sativum and Lathyrus sativus, all of which
have lost an intron in both clpP1 and rps12 [36]. The largest intron was found in trnK-UUU
(2,544 bp), spanning the entirematK gene, whilst trnL-UAA contains the smallest intron (543
bp). Two sets of open reading frames overlap: atpA and atpE overlap by four nucleotides whilst
psbC and psbD overlap by 17 nucleotides, taking the start codon of psbC to be the GTG codon
at position 36,432, based on the results on psbC translation in tobacco [50].

Fig 2. Structure of the LSC/IR junction regions in legume genera. Protein coding regions are indicated by grey boxes with genes below the line being
transcribed right to left and those below the line transcribed left to right. The number of base pairs between the end of the gene and the IR is indicated for
genes on either side of the junction, unless the junction coincides with the end of a gene.

doi:10.1371/journal.pone.0125768.g002
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Repeat content
The 59 sets of direct and indirect repeats of 30 bp or longer in the A. ligulata chloroplast ge-
nome are listed in S1 Table (not including the large IRs). These include 29 forward repeats,
seven reverse repeats, four complementary repeats and 19 palindromic repeats. Repeats were
found in the rpl16, ndhA, ycf3 and clpP1 introns, and in the accD, psaA and psaB genes. Com-
pared to other legumes, A. ligulata has a typical repeat content. The Trifolium subterraneum
plastid genome contains by far the greatest number of repeats with 500 repeats in total, while
Millettia pinnata and Lupinus luteus have the fewest, with 33 and 34 repeats, respectively (Fig
3).

One of these repeats, in the psbJ-petA spacer, is a tandem duplication of 60 bp. This is
shorter than the longest tandem repeats found in other legumes: for example, some tandem re-
peats in Cicer arietinum,Medicago truncatula and Trifolium subterraneum are well over 100
bp in length. The A. ligulata chloroplast genome contains another 31 tandem repeats of 10 bp
or more in length (S2 Table). Ten were found within genes, including sets in the ndhA, atpF
and clpP1 introns. The remaining repeats were found within intergenic spacer regions. Two
sets of tandem repeats observed in A. ligulata are also found in other legumes: repeat 13 is also

Fig 3. Acacia ligulataChloroplast Genome Repeat Content Compared to that of Other LegumeGenomes. Repeats are separated into groups
according to their size, and the total number of repeats is shown above the bars.

doi:10.1371/journal.pone.0125768.g003

Acacia ligulataChloroplast Genome

PLOSONE | DOI:10.1371/journal.pone.0125768 May 8, 2015 6 / 19



in the rps12-trnV spacer regions of Lotus japonicus,Millettia pinnata and Lupinus luteus,
whereas repeat 21 is also in the ycf2 genes ofMillettia pinnata and Lupinus luteus.

Phylogenetic analysis
Phylogenetic reconstruction of the 74 concatenated A. ligulata chloroplast genes, with introns
removed, supported previous phylogenetic hypotheses based on both genome rearrangement
[36] and thematK gene [32, 51], that place Acacia sister to a clade containing all the Papilio-
noideae legume taxa. Lupinus is sister to a clade containing two subclades, one containing
Cicer,Medicago, Trifolium, Pisum and Lathyrus, and a second containingMillettia, Phaseolus,
Vigna and Glycine (Fig 4). All nodes are strongly supported and the phylogeny generated from
concatenated genes of the chloroplast genomes is congruent with all but 7 of the 74 trees built
from individual chloroplast genes (data not shown).

Although not included in the concatenated phylogeny due to its loss in Pisum sativum, a
phylogeny was also built for the ycf4 gene (S1 Fig). The ycf4 gene has previously been identified
as a region of hypermutation in the Papilionoideae. Although this gene is typically 555 bp long,
it has gained an additional several hundred bp in Glycine max, Lotus japonicus and Lathyrus

Fig 4. Phylogenetic Tree Constructed from 74 Concatenated Chloroplast Genes Showing the Position of Acacia ligulata. Phylogenetic
reconstruction was performed using MrBayes with a General Time Reversible model with gamma and invariant sites. Posterior probabilities are indicated
above the branches where they differ from 1.

doi:10.1371/journal.pone.0125768.g004
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[34, 39, 52]. Acacia ligulata does not display an elevated rate of divergence in this gene, as
shown by the short branch length similar to those in the outgroup ycf4 genes.

Divergence in clpP1
In contrast to ycf4, the clpP1 gene is highly divergent in Acacia, as indicated by the unusually
long branch length leading to A. ligulata in the tree based on clpP1 sequences (Fig 5). In order
to determine the selective pressures influencing the divergence of the A. ligulata clpP1 gene, the
non-synonymous versus synonymous nucleotide substitution ratio (dN/dS) was calculated
using an alignment of clpP1 coding sequences (S2 Fig). A model using one dN/dS ratio across
the clpP1 phylogeny (Fig 6) was compared to a model in which a separate ratio was calculated
for the A. ligulata branch. The two-ratios model was found to be a significantly better fit to our
nucleotide data than the one-ratio model (likelihood ratio test, P< 0.00001). In this model, the
branches leading to the clpP1 genes of all species excluding A. ligulata were found to exhibit a
low dN/dS ratio (0.30), indicative of purifying selection, as would be expected for such a highly
conserved gene. In contrast, the branch leading to A. ligulata showed a dN/dS ratio (1.07) sta-
tistically indistinguishable from that in a model where the dN/dS ratio was fixed as 1 (likeli-
hood ratio test, P> 0.99). This suggests that the clpP1 sequence in A. ligulatamay not be
under selection at all. An absence of detectable selection is generally considered a strong sign of
a pseudogene [53]; however, none of the sequence changes lead to frameshifts or premature
stop codons that would clearly indicate that clpP1 is a pseudogene.

The clpP1 gene encodes a serine protease that is a subunit of the Clp protease [54]. Deletion
of the clpP1 gene in both tobacco and Chlamydomonas reinhardtii shows that the gene product
is absolutely essential [55–57] and indeed it is one of the few genes consistently conserved in
non-photosynthetic parasitic or mycoheterotrophic plants that have greatly reduced chloro-
plast genomes [58–61]. The poor conservation of this gene in A. ligulata was therefore a sur-
prise. Sequence alignments revealed that a hitherto invariant aspartate (part of the typical
protease catalytic triad) has been mutated to a valine in A. ligulata (Fig 7). This mutation can-
not be reversed by RNA editing and would imply that the gene product cannot be catalytically
active. Mutation of the corresponding aspartate to alanine in bacterial ClpP1 orthologues elim-
inates proteolytic activity [62]. To verify that the clpP1 gene is actually expressed, we analysed
A. ligulata clpP1 transcripts by RT-PCR (Fig 8). Transcripts were easily detected and both in-
trons can be correctly spliced out (verified by sequencing of the products obtained using cDNA
as a template), although many transcripts retain intron 1 (Fig 8B). Despite the divergent se-
quence, this suggests that the clpP1 protein might still be synthesised. In plastids, the Clp com-
plex consists of a heterotetradecameric core composed of two rings of seven subunits [63]. The
R-ring consists of three copies of catalytically active ClpP1 (the only subunit encoded by the
plastid genome) and single copies of the catalytically inactive ClpR3, ClpR4, ClpR5 and ClpR6
subunits [64]. The P-ring consists of ClpP3, ClpP4, ClpP5, ClpP6 in the ratio 1:2:3:1 [64]. It is
possible therefore, that the A. ligulata plastid clpP1 gene product assembles into a Clp complex
whose proteolytic function is assured by nucleus-encoded ClpP subunits in the P-ring. Howev-
er, loss of the ClpP1 active site would completely remove the catalytic activity from the R-ring.
To our knowledge, the effects of a loss of activity of a specific ClpP subunit (as opposed to loss
of the whole subunit) has not been tested in plants. Lack of expression of individual ClpP sub-
units leads to severe phenotypes (lethal in the case of ClpP1, ClpP4 and ClpP5; plants lacking
ClpP3 can grow heterotrophically, but very slowly; reviewed in [63]).

Acacia ligulataChloroplast Genome
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Search for a nuclear clpP1 gene
It seemed possible that the clpP1 gene has been transferred to the nucleus, and is functionally
expressed from this new location in A. ligulata, as suggested in other rare cases where the chlo-
roplast gene appears to be non-functional [65]. In order to identify any potentially nuclear
clpP1 sequences, raw reads were compared to the chloroplast clpP1 gene of Lupinus luteus, the
closest relative to Acacia with an available clpP1 sequence. Given that a functional transfer of a
chloroplast sequence to the nuclear genome would most likely require loss of the two introns,
the spliced Lupinus luteus sequence was used for the search. No reads aligning across the splice

Fig 5. Relative branch lengths leading to Acacia ligulata in different gene trees. Phylogenetic
reconstructions were performed separately for each individual gene alignment using MrBayes with a General
Time Reversible model with gamma and invariant sites. The bar chart indicates the proportion of the total
branch length in each tree contributed by the branch leading to Acacia ligulata.

doi:10.1371/journal.pone.0125768.g005

Fig 6. Phylogenetic Tree of the clpP1Gene Showing High Divergence in Acacia ligulata. Phylogenetic reconstruction was performed using MrBayes
with a General Time Reversible model with gamma and invariant sites. Posterior probabilities are indicated above the branches where they differ from 1.

doi:10.1371/journal.pone.0125768.g006
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junctions were found (Table 2). So that the likelihood of identifying nuclear clpP1 reads given
the low coverage expected could be ascertained, this analysis was repeated using nuclear CLP
gene sequences fromMedicago truncatula and Glycine max (the closest relatives of Acacia with
sequenced nuclear genomes) as reference sequences. For some of the genes, reads potentially
encoding Clp subunits were identified (Table 2). These reads confirm that the A. ligulata nucle-
ar genome does encode subunits for a probable plastid Clp protease, but the low coverage pre-
cludes us from concluding whether or not these nuclear genes include a clpP1 paralogue.

Conclusions
Investigations of the A. ligulata chloroplast genome revealed that it resembles a typical angio-
sperm chloroplast genome, with respect to structure and gene content. The large inversions
and deletions observed in the Papilionoideae are not present in the A. ligulata chloroplast ge-
nome. Our well-resolved phylogenetic analysis supports existing proposed phylogenies for the
Leguminosae. The most unusual feature of the genome is the highly divergent clpP1 gene. Our
analysis of this gene suggests that the gene is expressed, but the protein product may not be
catalytically active.

Methods

DNA sequencing
Dried phyllode material was obtained from a specimen of Acacia ligulata Benth. (Fabaceae)
held at the Western Australian Herbarium (voucher number: PERTH07807864; collected at
Lorna Glen, Western Australia, in 2006). Total genomic DNA was extracted using a CTAB
protocol [11]. DNA quantity and quality were assessed using a NanoDrop spectrophotometer
(ND-1000; Thermo Fisher Scientific, USA), and agarose gel electrophoresis, respectively. Ge-
nome library preparation was performed using a Nextera DNA Sample Preparation Kit (Illu-
mina, San Diego, USA), following the manufacturer’s directions. The library was prepared for

Fig 7. Alignment of a Region of the ClpP1 Protein Sequence. Alignment of a portion of the ClpP1 protein sequence from Arabidopsis thaliana, Acacia
ligulata, other legumes and outgroups. The three residues of the catalytic triad at amino acid positions 102, 127 and 178 are indicated by black boxes. They
are invariant apart from the mutation of aspartate 178 to valine in A. ligulata.

doi:10.1371/journal.pone.0125768.g007
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sequencing using the cBOT cluster generation system and PE V3 flow cell and cluster chemis-
try (Illumina). The library was sequenced on a single lane in paired-end mode using the

Fig 8. Splicing of the Acacia ligulata clpP1 Transcript. (A) Schematic representation of the clpP1 transcript showing unspliced and spliced forms. Primer
positions are indicated by arrows and the predicted size of PCR products are shown. (B) Ethidium bromide stained 1.0% agarose gel showing PCR amplified
products of (1) Acacia ligulataDNA with Primer A + Primer C; (2) Acacia ligulata cDNA with Primer A + Primer C; (3) negative control for Primer A + Primer C;
(4) Acacia ligulataDNA with Primer D + Primer F; (5) Acacia ligulata cDNA with Primer D + Primer F; and (6) negative control for Primer D + Primer F.

doi:10.1371/journal.pone.0125768.g008

Table 2. Results of searches for nucleus-encoded subunits of a plastid Clp complex in the Acacia ligulata sequences.

Accession Species Gene Length (in bp) No. of hits Min. identity E-value range % coverage

NC_023090 L. luteus clpP1 591 0

XM_003624370 M. truncatula CLPP3 1165 1 80% 0.086 8.67%

XM_003612554 M. truncatula clpP4 1172 3 81% 1.3 – 9e-05 17.23%

XM_003591344 M. truncatula CLPP5 1185 0

XM_003625930 M. truncatula CLPP6 1163 3 89% 1e-06 – 4e-13 21.66%

XM_003592441 M. truncatula clpR1 1564 1 91% 1e-07 6.65%

XM_003608743 M. truncatula CLPR2 1026 0

XM_003626156 M. truncatula CLPR3 1416 0

XM_006600793 G. max ClpR4 1286 1 90% 1e-25 7.85%

The choice of and nomenclature of these subunits follows the current understanding of the structure of the chloroplast Clp complex [63].

doi:10.1371/journal.pone.0125768.t002
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HiSeq2000 platform and V3 SBS kit (Illumina). Library preparation and sequencing were both
performed at the Ramaciotti Centre for Gene Function Analysis (Sydney, Australia; http://
devspace.ddtoo.com/).

Genome assembly
Overlapping paired-end reads were merged using the software FLASH version 1.2.7 [33] and
merged reads were assembled using Velvet version 1.2.08 [34], with k-mer values ranging from
51 to 71 and a coverage cut-off of 10. MUMmer version 3.0 [35] was used to compare the as-
sembled chloroplast contigs with the closest related complete chloroplast genome sequence
available, Inga leiocalycina Benth. (Koenen et al. unpublished data). Based on the alignments,
contigs were ordered and then merged to produce a single draft genome. Finally, reads were
mapped to the assembly using Bowtie 2 [66], and visually inspected for discrepancies using
Tablet version 1.13.07.31 [67]. Gaps between contigs were filled by PCR amplification with
primers that were designed based on the contig sequences (S3 Table). Reactions were per-
formed in 25 μL reactions using 1X PCR Polymerisation Buffer (Fisher-Biotec, Wembley, Aus-
tralia), 1.5 mMMgCl2, 1.5 μM each forward and reverse primer (GeneWorks; Thebarton,
Australia), 0.5 U Taq DNA polymerase (Fisher-Biotec) and 40 ng/μL template DNA. The cy-
cling profile used was: 5 mins at 95°C; followed by 30 secs at 95°C, 45 secs at the annealing tem-
perature (available in S3 Table), and 2 mins at 72°C for 35 cycles; then 4 mins at 72°C.

PCR products were purified prior to sequencing (QIAquick PCR Purification Kit; QIAGEN;
Chadstone, Australia), according to the manufacturer’s instructions. Sequencing reactions
were performed with forward and reverse primers in separate 10 μL reactions (ABI BigDYE
V3.1 Ready-Reaction Kit; Applied Biosystems, USA), following the manufacturer’s directions,
and analysed on a 3730XL DNA Analyser (Applied Biosystems). PCR purification and se-
quencing reactions were performed at the Australian Genome Research Facility (Perth, Austra-
lia). Forward and reverse sequences were aligned and manually assessed for incorrect base calls
using the CodonCode Aligner software (version 3.7.1; CodonCode Corporation, http://www.
codoncode.com/aligner/).

Genome content
The genome was annotated by comparison with other annotated genomes, particularly from
other legumes, using NCBI Blast [68]. All tRNA sequences were also checked against the
PlantRNA database [69]. The complete A. ligulata genome has been deposited into EMBL (ac-
cession number: LN555649). GC content for all species was calculated in Geneious (version
6.0.5; created by BioMatters; available from http://www.geneious.com/). The number and loca-
tion of all tandem repeats greater than 10 bp were detected for all Leguminosae species using
the Phobos Tandem Repeat Finder plugin in Geneious. Additionally, the number of forward,
reverse, complementary and palindromic repeats were also detected using REPuter [70]. In
order to allow comparison between our analysis and previous repeat analyses in legumes [38,
40, 43, 44], we removed one copy of the IR prior to analysis. Repeats greater than 30 bp were
then detected using a Hamming distance of 3, corresponding to a sequence identity of over
90%.

Phylogenetic analyses
Seventy-four protein coding genes were extracted from 21 taxa within the Fabaceae as well as
several outgroups, including Eucalyptus globulus, Pyrus pyrifolia, Cucumis sativus,Morus
indica and Castanea mollissima. The accD and ycf4 genes were not used in this analysis due to
their absence in Trifolium subterraneum and Pisum sativum, respectively. All genome
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sequences were obtained from GenBank (accession numbers in Table 1). Nucleotide sequences
were aligned using MAFFT [71] in Geneious. The model of molecular evolution for each gene
was determined using the jModelTest [72] function in MetaPiga version 3.1 [73] (models se-
lected can be seen in S4 Table). The alignments from the 74 genes were concatenated and
Bayesian inference was performed using MrBayes [74]. Data were analysed with a Gamma
model of rate heterogeneity, the proportion of invariable sites was estimated, and for
concatenated multilocus datasets, the alignment was partitioned and branch lengths optimised
on a per locus basis.

Bayesian analyses were conducted using MrBayes version 3.2 [75] and were run in parallel
on the Fornax supercomputer (located at iVEC@UWA) utilising the BEAGLE library [76]. The
Fornax computer consists of 96 computer nodes, each with two six-core Intel Xeon
X5650CPUs, a NVIDIA Tesla C2075 GPU and 74 GB of memory. Analyses were run for 10
million generations with sampling every 1,000 generation, partitioned datasets and parameter
estimation for each partition unlinked. Each analysis consisted of two independent runs, each
utilising twelve chains, eleven cold and one hot. Convergence between runs was monitored by
finding a plateau in the likelihood score (standard deviation of split frequencies< 0.0015) and
the potential scale reduction factor (PSRF) approaching one. Convergence of other parameters
within the runs was also checked using Tracer version 1.5.4 [77], with ESS values above 200 for
each run. The first 25% of each run was discarded as burn-in for the estimation of consensus
topology and the posterior probability for each node. Bayesian run files are available from the
authors upon request.

Assessing clpP1 divergence
Analysis of selection was performed across the clpP1 gene using the codeml package in PAML
[78]. dN/dS, the ratio of non-synonymous to synonymous nucleotide substitition, was calculat-
ed using an alignment of the clpP1 coding sequences in conjunction with the previously identi-
fied phylogeny of clpP1 (Fig 4). We compared the one-ratio model to a branch-specific model,
in which the value of dN/dS was separately estimated for A. ligulata. A likelihood ratio test was
used to evaluate the model of best fit. A model assuming neutral selection (dN/dS fixed to 1)
across all branches was also calculated to determine the significance of the A. ligulata dN/
dS value.

Analysis of clpP1 RNA
Acacia ligulata phyllodes were frozen in liquid nitrogen and ground using a ball mill (Retsch;
Haan, Germany). Total RNA was extracted using the QIAGEN RNeasy Plant Mini Kit accord-
ing to the manufacturer’s instructions (buffer RLC was added to the tissue powder). Contami-
nating genomic DNA was removed using the TURBO DNA-free kit (Ambion) and the treated
RNA was assessed for any remaining genomic DNA contamination by standard PCR (primers
A, C, D and F). RNA quantity and quality were assessed using a NanoDrop spectrophotometer
(ND-1000), and the Agilent 2100 Bioanalyzer (Agilent, USA), respectively. cDNA was generat-
ed from 0.5 μg of total RNA using the Superscript III reverse transcriptase (Invitrogen, Austra-
lia) and random primers, according to the manufacturer’s instructions.

PCR primers were designed based on the A. ligulata DNA sequence in order to test for in-
tron splicing (S5 Table). Reactions were performed in 20 μL volumes using 1X PCR buffer
(Invitrogen), 2.5 mMMg2+, 0.2 mM dNTPs (Invitrogen), 0.2 μM forward and reverse primers
and Platinum Taq DNA polymerase (Invitrogen). The PCR cycling profile was: 5 mins at 94°C,
followed by 30 secs at 94°C, 30 secs at 55°C and 1 min at 72°C for 35 cycles, then 10 mins at
72°C. Multiple products were obtained in one case (lane 4 of Fig 8B). Attempts to improve the
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stringency of the reaction by designing new primers and adjusting the annealing temp or Mg++

concentration were not successful. We obtained the same set of multiple products when pure
plasmid containing the 998 bp amplicon was used as a template, so the multiple products are
not due to additional copies of the gene elsewhere in the genome. To verify the identification of
PCR products generated, products were purified from the gel using the QIAquick Gel Extrac-
tion kit (QIAGEN). Purified amplicons were cloned using a pGEM-T Easy vector (Promega,
Australia). Plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (QIAGEN), and
then sequenced as described above (Macrogen Inc.).

Search for nuclear clp genes
A search database was created from all A. ligulata reads using the BLAST package version
2.2.10 [68]. The L. luteus reference was then compared to the A. ligulata database using blastn.
In order to identify nuclear sequences rather than chloroplast sequences, the results were as-
sessed for reads which aligned to the reference across the splice junctions. This analysis was re-
peated using nucleus-encoded Clp subunits ofM. truncatula and G.max as reference
sequences (Table 2). Potential matches were confirmed by comparing the reads to a database
of plant sequences using tblastx and verifying that the best matches were nuclear CLP genes.
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S1 Fig. Phylogenetic Reconstruction Using the ycf4 gene. Phylogenetic reconstruction was
performed using MrBayes with a General Time Reversible model with gamma and invariant
sites. Posterior probabilities are indicated above the branches.
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S2 Fig. Multiple Alignment of clpP1 Coding Sequences.Nucleotide sequences were aligned
using MAFFT in Geneious.
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repeated sequences of 30 or more nucleotides in length. The type of repeat (C, complementary;
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