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Abstract—Coursetia caribaea is geographically and morphologically the most variable 

species in the genus Coursetia and in the tribe Robinieae (Leguminosae, Papilionoideae). 

Because of potentially undetected species, we assessed the phylogenetic relationships among the 

eight taxonomic varieties of C. caribaea. Sampling included nuclear ribosomal internal 

transcribed spacer sequences from 489 Robinieae accessions representing all varieties of C. 

caribaea and 38 of the 40 species of Coursetia, in addition to chloroplast trnD-trnT sequences 

from 186 accessions. Separate and combined phylogenetic analyses resolved a clade of 

conspecific accessions of the Bolivian C. caribaea var. astragalina as sister to the central 

Andean Coursetia grandiflora clade. Also distantly related to Coursetia caribaea var. caribaea 

accessions were those of the coastal Oaxacan C. caribaea var. pacifica, which formed the sister 

clade to accessions of the central Andean C. caribaea var. ochroleuca. The estimated mean ages 

of the stem clades for these three lineages, 11, 7.7, and 7.7 Ma, respectively, contrasted to the 

estimated mean ages of the corresponding crown clades of 0, 0, and 1.5 Ma. The contrasting 

stem and crown ages suggest that these taxa, appropriately ranked as species, Coursetia 

astragalina, Coursetia diversifolia, and Coursetia ochroleuca, each have persisted over 

evolutionary time frames as distinct geographically localized populations in seasonally dry 

tropical forests and woodlands. 

 

Keywords—Neotropics, Papilionoideae, phylogenetics, seasonally dry forests, taxonomy. 
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The papilionoid legume tribe Robinieae (Leguminosae) comprises 11 genera and 77 mostly 

woody species that generally inhabit seasonally dry topical forests and woodlands (SDTFs) and 

secondarily pine-oak woodlands (Lavin and Sousa 1995; Lavin et al. 2003). Molecular 

phylogenetic analyses of Robinieae generally have revealed a pattern of coalescence of 

geographically confined conspecific samples (Duno-de-Stefano et al. 2010; Queiroz and Lavin 

2011; Pennington et al. 2011; Pennington and Lavin 2016). Estimated mean ages of the stem 

clades of such species geographically confined to the Yucatán region, local inter-Andean valleys, 

or parts of the Brazilian caatinga have averaged over several million years (e.g., Duno-de-

Stefano et al. 2010; Särkinen et al. 2012; Queiroz and Lavin 2011). This pattern is thought to be 

more representative of woody plant species inhabiting highly seasonally tropical environments 

(e.g., Cyathostegia; Pennington et al. 2010; Särkinen et al. 2012) than for woody plant species 

inhabiting adjacent tropical savannas and wet forests (e.g., species of the genus Inga; Lavin 

2006; Pennington et al. 2009; Pennington and Lavin 2016; Dexter et al. 2017). 

Generally inhabiting SDTFs and adjacent pine-oak woodlands, Coursetia caribaea (Jacq.) 

Lavin ranges from southeastern Arizona, USA, to Mexico and Central America, the Caribbean 

Basin, northern South America, and along the Andes from Venezuela to northern Bolivia. Lavin 

(1988) recognized eight taxonomic varieties within C. caribaea, the most morphologically 

variable and geographically widespread species in the genus and in the tribe Robinieae. These 

included five varieties from Mexico and adjacent Arizona, USA. Listed from north to south, 

these are Coursetia caribaea vars. sericea (A. Gray) Lavin, tomentosa Lavin, trifoliolata 

(Rydberg) Lavin, pacifica, (M. Sousa & Lavin) Lavin, and chiapensis (Rydberg) Lavin (Lavin 

1988; Supplemental Map). Two additional South American varieties, Coursetia caribaea vars. 

astragalina (Kunth) Lavin and ochroleuca (Jacq.) Lavin come from southern Colombia, 
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Ecuador, Peru, and west central Bolivia. The most morphologically variable and geographically 

widespread of the eight, Coursetia caribaea var. caribaea, nearly encompasses the geographical 

distribution of the other seven varieties (Lavin 1988; Supplemental Map). Sympatry is not 

common among these varieties. 

We focus on this geographically widespread and morphologically variable species because 

ongoing phylogenetic analyses of nuclear ribosomal DNA 5.8S and flanking internal transcribed 

spacers (the nrDNA ITS region) and chloroplast sequences revealed overlooked species (e.g., 

Duno-de-Stefano et al. 2010) and an underlying evolutionary process involving evolutionary 

persistence of localized populations, which is likely common to SDTFs (Pennington and Lavin 

2016). In our other studies of overlooked species variation in Coursetia and related genera (e.g., 

Queiroz and Lavin 2011; Pennington et al. 2011; Pennington and Lavin 2016), we argued that 

certain of these lineages were worthy of distinction at the species level using a unified species 

concept (de Queiroz 2007). This and our other studies speak to a general evolutionary finding 

that woody species inhabiting highly seasonal tropical climates (e.g., SDTFs) must be so well 

adapted to extremely drought-prone conditions that they can persist for millions of years as 

geographically restricted populations. 

 

MATERIALS AND METHODS 

Taxon Sampling—Sampling DNA sequence variation focused on multiple conspecific 

accessions of nearly all species and infraspecific taxa in Robinieae by expanding the studies of 

Lavin et al. (2003), Duno-de-Stefano et al. (2010), Queiroz and Lavin (2011), Pennington et al. 

(2011), and Pennington and Lavin (2016). Of the 77 species in the tribe, we sampled 73 species 

with 478 accessions in total and most species represented by multiple samples (Table 1). The 
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four yet-unsampled species of Robinieae (listed in Table 1) are represented by just type 

collections, of which leaf extractions yielded unamplifiable DNA. Field specimens of these four 

have not been successfully located. We sampled 85 accessions representing all eight taxonomic 

varieties of Coursetia caribaea: vars. caribaea, astragalina, chiapensis, ochroleuca, pacifica, 

sericea, tomentosa, and trifoliolata (Lavin 1988; Lavin and Sousa 1995). The designated 

outgroup included 10 species and 11 accessions from the tribes Loteae and Sesbanieae, following 

Lavin et al. (2003). Sampling occurred primarily from herbarium specimens and included nearly 

the full extent of the ecological, geographical, morphological, and taxonomic variation of both 

tribe Robinieae and Coursetia caribaea. Geographic coordinates (longitude and latitude in 

decimal degrees and mapped with the coordinate reference system +proj = longlat + datum = 

WGS84) for all samples were taken from herbarium label data and verified using knowledge of 

the collection area and the geographic mapping functions in the dismo and raster packages 

(Hijmans et al. 2016; Hijmans et al. 2017) of the program R (R Core Team 2017). Herbarium 

specimens sampled during this study came from ASU, CICY, E, F, FHO, HUEFS, HUH, K, 

MEXU, MICH, MO, MONT, NY, and US (acronyms follow Thiers 2017). 

DNA Sequence Data and Phylogenetic Analysis—Total genomic DNA came from leaf tissue 

using the Qiagen DNeasy plant mini kit (Valencia, California). The nrDNA ITS region (Baldwin 

et al. 1995; Song et al. 2012), subjected to comprehensive sampling within and among species of 

Robinieae, shows high levels of intra- and inter-specific geographic variation (e.g., Duno-de-

Stefano et al. 2010; Queiroz and Lavin 2011; Pennington et al. 2011; Pennington and Lavin 

2016). The nrDNA ITS region readily amplified from leaf extractions of herbarium specimens 

with a great range in age (e.g., some specimens were over 100 years old) and stored under highly 

variable conditions (e.g., from herbaria located in tropical and temperate regions). Analyzing 
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chloroplast DNA sequences from the phylogenetically informative trnD-trnT region (Pennington 

et al. 2011; Queiroz and Lavin 2011) verified relevant results from the nrDNA ITS analysis. 

Amplification and sequencing primers and reaction conditions for the nrDNA ITS region were 

described in Lavin et al. (2003) and those for the trnD-trnT region were described in Shaw et al. 

(2005). We minimized the potential cross contamination of conspecific samples by isolating and 

amplifying DNA of conspecific samples during different time periods separated by months or 

years. 

Assembly of forward and reverse sequence reads into contigs used Sequencher 4.1 (Gene 

Codes, Ann Arbor, Michigan). MUSCLE alignments included default parameters and several 

rounds of refinements (Edgar 2004). Manual alignments and other data manipulations involved 

PhyDE (Müller et al. 2010). The phylogeny figures in this study report all GenBank accession 

numbers, many of which were reported previously (Lavin et al. 2003; Duno-de-Stefano et al. 

2010; Queiroz and Lavin 2011). All GenBank accessions include recently updated collection 

locality information (e.g., https://www.ncbi.nlm.nih.gov/nuccore/GQ996241), including latitude 

and longitude. The nrDNA ITS and trnD-trnT data matrices, along with command blocks, have 

been deposited in TreeBASE (study 18275) and Dryad (datadryad.org; Lavin et al. 2018). 

With direct sequencing, we failed to detect paralogous nrDNA ITS sequences (e.g., Bailey et 

al. 2003; Song et al. 2012). To favor paralog detection, we PCR amplified samples for 40 cycles, 

each annealing primers at 48°C for 1 min followed by an extension for 10 min. Contig assembly 

of forward and reverse reads, sequence data alignments, and Bayesian parameter estimation of 

base frequencies, substitution rates, and invariant sites revealed no anomalous ITS1, 5.8S, and 

ITS2 sequences. 

https://www.ncbi.nlm.nih.gov/nuccore/GQ996241
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Parsimony analyses involved PAUP* 4.0a build 159 (Swofford 2002). Heuristic searches 

included setting the number of random addition replicates at 100, holding 10 trees at each step, 

using tree-bisection-reconnection branch swapping on non-minimum trees, and ultimately 

retaining a maximum of 10,000 most parsimonious trees. Nonparametric bootstrap resampling 

(Felsenstein 1985) included 10,000 replicates each subjected to the same heuristic search options 

but with no retention of multiple trees per bootstrap replicate. 

Bayesian analyses (Yang and Rannala 1997) used MrBayes 3.2.6 (Huelsenbeck and Ronquist 

2001; Ronquist and Huelsenbeck 2003). This included estimating all nucleotide frequency and 

substitution variables separately for each data partitions (i.e., the nrDNA ITS1, 5.8S, and ITS2 

regions, and the trnD-trnY, trnY-trnE, and trnE-trnD regions). All analyses involved two 

separate runs of a Metropolis-coupled Markov chain Monte Carlo permutation of variables with 

each run initiated using a random tree and four chains set at default temperatures. Information 

criteria implemented in jModeltest2 (Guindon and Gascuel 2003; Darriba et al. 2012) enabled 

selection of the nucleotide substitution model GTR + I + G for both the nrDNA ITS and the 

trnD-trnT regions. Markov chains were run for 20 × 106 generations and sampled every 20 × 104 

generation. Burnin involved discarding the first 25% of the samples from each run (i.e., the 

default). The default settings of the ‘sump’ command in MrBayes verified likelihood stationarity 

and convergence of the two separate runs. 

Evolutionary Rates Analysis—Estimates of nucleotide substitution rates and ages involved 

the program r8s (Sanderson 2012), as described in Lavin et al. (2005), and the chronos function 

in the ape package (Paradis et al. 2004; Paradis 2013 and 2017) of the program R (R Core Team 

2016). Absolute rates and ages were obtained by constraining the age of the Robinieae crown 

clade to 31 Ma for each of the nrDNA ITS and trnD-trnT phylogenies. This age represents the 
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minimum estimated by Lavin et al. (2005) for the crown clade of the Robinieae phylogeny (node 

74). By using this minimum age constraint, we wanted to determine if we could still obtain old 

age estimates after biasing for young ages (cf., Lavin et al. 2005). Age and rate estimates derived 

from penalized likelihood (PL) rate smoothing (Sanderson 2002) come from the mean and 

standard deviation of 100 Bayesian trees. 

 

RESULTS 

The nrDNA ITS data set of 489 aligned sequences included 777 nucleotide sites. The trnD-

trnT data set of 186 sequences included 2143 aligned sites. The combined nrDNA ITS and trnD-

trnT data set comprised 181 sequences and 2799 aligned sites (763 nrDNA ITS and 2036 trnD-

trnT sites). The larger number of nrDNA ITS samples results from this region being amplified 

much more readily than chloroplast loci from DNA isolations of small leaf fragments of 

herbarium specimens. The nrDNA ITS data set included 0.1% missing entries, the trnD-trnT data 

sets 1.2% missing entries, and the combined data set 0.4% missing entries. Missing data 

comprised mostly small regions of leading and trailing sequences. Parsimony analysis of the 

nrDNA ITS data set identified 431 informative sites that resolved a set of 10,000 most 

parsimonious trees each with a length of 2167 steps, a consistency index of 0.412 and a retention 

index of 0.948. Parsimony analysis of the trnD-trnT data set identified 504 informative sites that 

resolved a set of 10,000 most parsimonious trees each with a length of 1226 steps, a consistency 

index of 0.749 and a retention index of 0.937. Parsimony analysis of the combined data 

identified 755 informative sites that resolved a set of 10,000 most parsimonious trees each with a 

length of 2557 steps, a consistency index of 0.583 and a retention index of 0.920. 
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Parsimony and Bayesian analyses of the nrDNA ITS and trnD-trnT resolved the same general 

relationships with respect to well-supported clades (i.e., those with both ≥90 parsimony bootstrap 

percentages and ≥0.95 posterior probabilities). This was especially the case regarding Coursetia 

caribaea vars. astragalina, ochroleuca, and pacifica. Multiple samples of each of these three 

varieties formed clades that did not nest within the clade containing samples of Coursetia 

caribaea var. caribaea (Figs. 1–2; Figs. S1–3). In contrast, the clade containing all samples of 

Coursetia caribaea var. caribaea also included those of C. caribaea vars. chiapensis, sericea, 

tomentosa, and trifoliolata, as well as certain other species, such as Coursetia andina, C. 

barancana, C. glabella, C. greenmanii, C. guatemalensis, C. hidalgoana, and C. pumila (Figs. 

S1–3). These similar results from separate data analyses prompted the combined analysis. 

The analysis of the nrDNA ITS and combined data resolved Coursetia caribaea var. 

astragalina as sister to the Coursetia grandiflora clade, which comprises C. gracilis, C. dubia, 

and C. grandiflora (Figs. 1-2, 3a). The trnD-trnT phylogeny resolved Coursetia caribaea var. 

astragalina as sister to a clade comprising a subset of samples of C. hassleri from Bolivia and 

northern Argentina, but this relationship was poorly by parsimony bootstrap analysis (Fig. S2). 

Regardless, in all analyses, var. astragalina is not most closely related to samples of var. 

caribaea. All analyses resolved Coursetia caribaea var. ochroleuca (centered in Ecuador and 

Peru) as sister to the clade of the samples of Coursetia caribaea var. pacifica (coastal Oaxaca, 

Mexico; Figs. 1-2, 3b). Furthermore, in all analyses, the clade containing samples of vars. 

ochroleuca and pacifica was not resolved as most closely related to the clade with samples of 

var. caribaea. 

The mean ages estimated from nrDNA ITS data for the stem clades of vars. astragalina, 

pacifica, and ochroleuca were 11, 7.7, 7.7 Ma, respectively (Table 2). These contrast to mean 
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ages estimated for the respective crown clades of 0, 0, and 1.5 Ma. These stem age estimates are 

generally older than those of clades resolved for three of the five remaining varieties of 

Coursetia caribaea, vars. sericea, tomentosa, and trifoliolata (Table 2; var. chiapensis was not 

resolved as monophyletic and var. caribaea was resolved as paraphyletic with respect to a subset 

of Coursetia species; Fig. S1). The mean ages estimated from the trnD-trnT data for the stem 

clades of vars. astragalina, pacifica, and ochroleuca were 4.2, 2.9, and 2.9 Ma, respectively 

(Table 3). These contrast to mean ages estimated for the respective crown clades of 0, 0, and 0.3 

Ma. The two geographically restricted Coursetia caribaea vars. astragalina and pacifica (Figs. 

3a, b, respectively) each lacked intravarietal sequence diversity and thus associated with a young 

crown age estimate. The geographically widespread var. ochroleuca (Fig. 3b) harbored greater 

sequence diversity resulting in its older crown age estimates (Tables 2-3). 

 

DISCUSSION 

The nrDNA ITS, trnD-trnT, and combined phylogenies each resolved highly supported clades 

of conspecific samples for each of Coursetia caribaea vars. astragalina, ochroleuca, and 

pacifica. These clades were each distantly related to samples of the other varieties of C. caribaea 

(Figs. 1–2). This congruence provides the prima facie evidence for ranking these three varieties 

at the species level. Samples of Coursetia caribaea vars. chiapensis, sericea, trifoliolata, and 

tomentosa derive from the clade containing the samples of var. caribaea (Fig. S1). Ranking these 

four varieties at the species level, as in the case of Coursetia greenmanii (Duno-de-Stefano et al. 

2010), remains in question pending a comprehensive sampling of DNA sequence variation, in 

addition to a detailed geographic and morphological analysis. 
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Ranking Coursetia caribaea vars. astragalina, ochroleuca, and pacifica at the species level 

also is justified by the congruence of morphological, geographical, and molecular phylogenetic 

evidence. The phenotypic distinctions reported in Lavin (1988) and reiterated in the Taxonomic 

Section, below, support the morphological integrity of these three taxa. The limited geographic 

distribution of each of these three in localized regions of SDTF, which is typical of species 

endemic to this biome (e.g., Pennington et al. 2006 and 2009; Duno-de-Stefano et al. 2010; 

Pennington et al. 2011; Queiroz and Lavin 2011; Pennington and Lavin 2016), evinces the 

geographical integrity of these three taxa. Coursetia caribaea var. astragalina occurs in 

southwestern Colombia in the provinces of Nariño and Valle del Cauca (Fig. 3a). Coursetia 

caribaea var. ochroleuca inhabits coastal and inter-Andean SDTF in Ecuador, Peru, and the 

Yungas region of Bolivia. Coursetia caribaea var. pacifica resides in a small region of SDTF 

from southern Oaxaca, Mexico (Fig. 3b). The phylogenetic integrity of these three is evinced by 

samples of DNA sequences from accessions of each of vars. astragalina, ochroleuca, and 

pacifica forming coalesced clades with old stem ages in both the nrDNA ITS and trnD-trnT 

analyses (Tables 2–3). 

This study reveals other lineages that potentially deserve ranking at the species level. 

Examples include two of the five remaining varieties of Coursetia caribaea, var. sericea from 

Arizona and northern Mexico and var. trifoliolata from west-central Mexico. Also included here 

are two clades of Coursetia glandulosa from the northern and southern Sierra Madre Occidental, 

and the northeastern and southwestern clades of Coursetia hassleri centered in northern 

Argentina and adjacent countries (Figs. S1–S3). These clades need more study, which could 

reveal whether they each have ecological, genetic, geographical, and morphological integrity. 
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The discovery of overlooked species diversity in Coursetia parallels the results from recent 

densely sampled phylogenies of other Neotropical SDTF legume genera, including Poissonia 

(Pennington et al. 2011), Mimosa (Särkinen et al. 2011), Leucaena (Govindarajulu et al. 2011), 

and Arquita (Gagnon et al. 2015), all of which have revealed similar deeply coalescent, 

reciprocally monophyletic clades representing previously unrecognized species. This suggests 

that with the construction of phylogenies with complete sampling of species and dense sampling 

of intraspecific diversity for other SDTF genera, additional species with narrowly restricted 

distributions endemic to single SDTF nuclei can be expected (Pennington and Lavin 2016). This 

would further highlight the striking patterns of high phylogenetic β-diversity, endemism, and 

geographical phylogenetic structure across the SDTF biome (DRYFLOR 2016). 

The old age estimates of the stem clades and the young age estimates of the crown clades 

(Tables 2–3), interpreted by coalescent theory (e.g., Naciri and Linder 2015), suggest that 

Coursetia caribaea vars. astragalina, ochroleuca, and pacifica each have inhabited their 

respective areas for at least several million years in isolation as small populations (Pennington 

and Lavin 2016). These taxa must be well adapted to the low and erratic moisture regime of the 

SDTF biome so that they can persist as separately evolving metapopulations with small effective 

sizes in narrow geographic confines and without ecological interference by immigration of 

species not likely to be as adapted to SDTFs (Pennington et al. 2009; Pennington and Lavin 

2016). The three focal taxa are ecologically similar with respect to inhabiting mainly coastal or 

Pacific slope SDTFs. However, the phenotypic, geographic, and phylogenetic integrity of each of 

Coursetia caribaea vars. astragalina, ochroleuca, and pacifica suggests that they each have been 

separately evolving lineages for millions of years. Therefore, they meet the criteria of a lineage-

based species concept (e.g., de Queiroz 2007) and warrant recognition at the species level. 
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TAXONOMIC TREATMENT 

The following key distinguishes the newly ranked species from all similar taxa. It derives 

from Lavin (1988) and Duno-de-Stefano et al. (2010) and includes five remaining varieties of 

Coursetia caribaea and all species morphologically like C. caribaea. The morphological 

distinction of this group of species in the context of the genus Coursetia delimited by Lavin 

(1988) and Lavin et al. (2003), includes the following: growth habit of subshrubs and herbs, 

rarely large shrubs and treelets; leaves imparipinnate, leaflets sometimes with reticulate purplish 

tannin blotches on the abaxial surfaces of herbarium (pressed and dried) specimens, stipules not 

spinescent, leaf rachis eglandular; inflorescences erect to ascending, solitary in the axils of 

mature leaves on long shoots, long-pedunculate, peduncles one-third to one-half the length of the 

rachis, rachis of inflorescence eglandular to occasionally stipitate-glandular; legumes resupinate, 

falcate-secund, borne from twisted, deflexed pedicels; valves with evident squarish seed 

compartments. 

 

KEY TO COURSETIA CARIBAEA AND MORPHOLOGICALLY SIMILAR SPECIES 

A. Stems prostrate to decumbent, herbaceous at the base, arising from a woody caudex; abaxial 

leaflet surfaces with purplish tannin deposits (absent in forms of C. caribaea); roots fusiform-

tuberous (except in forms of C. caribaea); southwestern USA, Mexico and Central America ... 

  ....................................................................................................................................................1. 

1. Ovary villous; legume strigose to pilose; banner petal yellowish; tannins deposited only 

along veins of abaxial leaflet surfaces; montane pine-oak settings in the southwestern USA 

(Arizona) and adjacent Mexico (Chihuahua) ......................................................... C. glabella 
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1. Ovary granuliferous; legume glabrous; banner petal whitish to pink or yellow; tannins, if 

present, deposited on abaxial leaflet surface .........................................................................2. 

2. Larger leaves with 13–21 leaflets ......................................................................................3. 

3. Leaflet tannins, if present, confined toward the center of the abaxial leaflet surface, 

never extending to the margins; raceme rachis stipitate-glandular to eglandular; 

terminal leaflet usually larger than the lateral ones; stems ascending at least at the 

base, roots tuberous or not; Yucatan Peninsula region, or northwestern Mexico 

(Sonora, western Chihuahua, Baja California Sur) and the adjacent U.S.A. (Arizona), 

sporadically to southern Mexico ....................................... C. caribaea (see couplet 19) 

3. Leaflet tannins confined to the margins and midrib, or evenly scattered over the entire 

abaxial leaflet surface; raceme rachis eglandular; terminal leaflet equal in size to the 

lateral ones; stems prostrate to decumbent from the base; roots always tuberous; 

Mexico (extreme southern Chihuahua southward to Oaxaca along the Sierra Madre 

Occidental, Sierra Madre del Sur, and Sierra Volcánica Transversal) ........................4. 

4. Petals whitish to pinkish, occasionally the banner petal yellowish; calyx tube 

brownish, strigose to pilose; inflorescence rachis glabrate to sparsely strigose; 

legume 3–4 mm wide; Mexico (southern Chihuahua south to Oaxaca) .... C. pumila 

4. Petals all yellowish; calyx tube whitish green, sericeous; inflorescence rachis 

densely whitish sericeous to villous; legume 4.5–5.0 mm wide; Mexico (Hidalgo, 

Edo. México)....................................................................................... C. hidalgoana 

2. Larger leaves with 3–9(–11) leaflets .................................................................................5. 
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5. Leaflets 5–9 per leaf, with tannin deposits on both surfaces; inflorescence rachises 

eglandular, much longer than the subtending leaves; ovary with 25–30 ovules; border 

of Chihuahua and Sonora, Mexico ......................................................... C. barrancana 

5. Leaflets 3–5(–7) per leaf, without tannin deposits, if present, only on the abaxial 

surface; inflorescence rachis stipitate-glandular to eglandular, equal to or shorter than 

the subtending leaves (longer in C. caribaea var. sericea but then stipitate-

glandular); ovary with 15–23 ovules; widespread from northern Mexico to Central 

America ........................................................................................................................6. 

6. Leaves with exactly 3 leaflets, the terminal one 2–3 times longer than the laterals; 

branches and calyx hispid with dull reddish trichomes; floral bracts 4–10 mm 

long, commonly persistent to anthesis; southern coastal Mexico (Oaxaca) .............. 

 ............................................................................................................  C. diversifolia 

6. Leaves with 3–27 leaflets, the terminal one less than twice as long as the laterals; 

branches glabrate to hispid or lanate, calyx sericeous with whitish trichomes; 

floral bracts less than 6 mm long, caducous before anthesis; widespread in 

Mexico ....................................................................................................................7. 

7. Stems covered with short, closely appressed, whitish trichomes; leaflets 3 or 5 

per leaf, venation impressed above; inflorescence rachis eglandular; roots 

cylindrical fusiform-tuberous ................................... C. caribaea var. trifoliolata 

7. Stems sericeous to hispid with long, widely spreading trichomes, occasionally 

lanate; leaflets usually 5 or more per leaf, venation not impressed above; 

inflorescence rachis mostly stipitate-glandular; roots not tuberous, or 

spheroidal fusiform-tuberous .............................................................................8. 
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8. Prostrate herbs even in undisturbed settings; roots with fusiform tubers; 

leaves with petiole 15–39 mm long, total length 63–98 mm, with 3–5(–7) 

leaflets, distal leaflets abruptly accrescent and mostly widely elliptic; leaflet 

vestiture of short appressed hairs on the lower surface, and upper leaf 

surface glabrous; peduncle of inflorescence 20–110 mm long; rachis with 

4–5 flowers, eglandular; Yucatan Peninsula ............................. C. greenmanii 

8. Erect subshrub or prostrate if growing in disturbed settings; roots with a 

lignified main axis (uniformly so in the Yucatan Peninsula) or with tubers 

(in northwestern Mexico and adjacent U.S.A.); leaves with petiole 3–10 mm 

long, total length 35–95 mm, with 9–27 leaflets, distal leaflets moderately 

accrescent, if at all, and mostly narrowly elliptic; leaflet vestiture of long 

appressed hairs at least on lower surface; peduncle of inflorescence 

generally less than 20 mm long; rachis with 1–2(–4) flowers, or, if with 

more, the rachis stipitate-glandular; widespread .............................................. 

  ............................................................................ C. caribaea (see couplet 20) 

A. Stems erect to ascending (often decumbent in C. gracilis), woody at the base, arising from a 

stout woody rootstock; abaxial leaflet surface without purplish tannin deposits (except C. 

caribaea vars. sericea and tomentosa), roots not fusiform-tuberous (except C. caribaea var. 

trifoliolata); widespread .............................................................................................................9. 

9. Leaves with the terminal leaflet conspicuously the largest; stipels well-developed ............10. 

10. Banner petal deep red, striate with purplish veins; flowers densely clustered on a 

rachis, internodes 1–2 mm long and reddish brown hispid; abaxial leaflet surfaces 
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without tannin deposits; mountains of western Guatemala and adjacent Mexico 

(Chiapas) .................................................................................................. C. guatemalensis 

10. Banner petal whitish to pinkish, or yellowish, striate with reddish veins; flowers not 

densely clustered on a rachis, internodes mostly more than 3 mm long and rarely hispid; 

abaxial leaflet surfaces with tannin deposits (in C. caribaea vars. sericea and 

tomentosa) or without; widespread ....................................... C. caribaea (see couplet 17) 

9. Leaves with all leaflets about equal in size or gradually reduced distally; stipels absent or 

present .................................................................................................................................11. 

11. Calyx lobes triangular, mostly shorter than the tube (often longer in C. weberbaueri); 

staminal tube arched, pseudomonadelphous (the vexillary filament adnate near the 

base); ovary glabrous to granuliferous; style with an extrorse pollen brush densely 

compacted toward the distal end; Ecuador and Peru ......................................................12. 

12. Largest leaflets 20–31 mm long, 5–10 mm wide, abaxial surface glabrate to sparsely 

strigose; banner petal 17–18 mm long; largely unbranched shrubs to 4 m tall; Peru 

(Tumbes) .................................................................................................C. tumbezensis 

12. Largest leaflets 4–23 mm long, 1–6.5 mm wide, abaxial surface densely sericeous to 

woolly; banner petal 9–15 mm long; much branched shrubs to 2 m tall; Ecuador, 

interior northern Peru .................................................................................................13. 

13. Banner petal dark red to rose, 9–10 mm long; ovary with 14–18 ovules; style 6–7 

mm long; pedicel 2.0–2.5 mm long; leaflets 4–11(–14) mm long, (37–)41–51 per 

leaf; Ecuador ................................................................................................ C. dubia 
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13. Banner petal whitish to purple, 11–15 mm long; ovary with 18–22 ovules; style 

8–10 mm long; pedicel 2.5–6.0 mm long; leaflets 5–23 mm long, 21–43 per leaf; 

northern Peru, southern Ecuador........................................................ C. grandiflora 

11. Calyx lobes narrowly to broadly lanceolate or narrowly triangular, usually longer than 

the tube; staminal tube straight, diadelphous; ovary glabrous to granuliferous or villous 

to woolly; style with a latrorse pollen brush loosely scattered along nearly the entire 

length; Mexico, Central America, and South America ..................................................14. 

14. Leaflets caducous from the leaf rachis, very narrowly elliptic, 5–10 mm long, 1–2 

mm wide, apex acute; petals ochroleucus; keel longer than the wings; ovary 

granuliferous; very small, often decumbent subshrubs with vine-like stems; northern 

Ecuador .......................................................................................................... C. gracilis 

14. Leaflets persistent on leaf rachis, narrowly elliptic, the larger 8–74 mm long, 3–38 

mm wide, apex rounded to acuminate; petals white to pinkish or yellow; keel equal 

to or shorter than the wings; ovary sericeous to villous or woolly, or rarely 

granuliferous; erect to ascending shrubs and subshrubs, rarely trees ........................15. 

15. Petals evenly yellow, banner petal not striate; leaflets 15–25 per leaf, gradually 

reduced in size towards the apex; stipels absent; ovary densely villous. 

16. Raceme rachises 6–17 cm long, well exserted above the leaves; pedicel, calyx, 

and/or raceme rachis stipitate glandular; leaflets 21–25 per leaf; branches 

sericeous; Colombia (Boyacá) ................................................... C. intermontana 

16. Raceme rachises 1–4 cm long, congested among leaves at distal branch ends; 

pedicel, calyx, and raceme rachis eglandular; leaflets 15–23 per leaf; branches 

densely villous; Venezuela (Mérida) .................................................... C. andina 
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15. Petals whitish to pinkish or yellowish, banner petal often striate, the veins 

suffused with red; leaflets 5–27 per leaf, uniform in size or gradually enlarged 

toward the apex; stipels usually present; ovary woolly (in C. astragalina), villous, 

granuliferous, stipitate-glandular, or glabrous ......................................................17. 

17. Abaxial leaflet surfaces purplish, at least in part, with tannin deposits; 

subshrubs and herbs; U.S.A., Mexico, and Central America ...........................18. 

18. Branches and abaxial leaflet surfaces densely sericeous to tomentose; 

leaflets 5–7 per leaf, widely elliptic; all petals yellow; Mexico (Hidalgo and 

San Luis Potosí) ................................................... C. caribaea var. tomentosa 

18. Branches sericeous to hispid or glabrous; abaxial leaflet surfaces pilose to 

densely sericeous; largest leaves with more than 7 narrowly to widely 

elliptic leaflets; all petals whitish, or only the banner petal yellowish and 

commonly suffused with red along veins ....................................................19. 

19. Erect to ascending subshrubs, rarely herbs; inflorescence rachis 1.5–3.5 

times the length of the subtending leaf, with up to 30 nodes; abaxial 

surface of leaflets with purplish tannin deposits in the center of the 

lamina; Mexico (northern Sinaloa and Durango, Sonora, and Chihuahua) 

and the adjacent U.S.A. (Arizona) ........................ C. caribaea var. sericea 

19. Decumbent herbs and weak subshrubs; inflorescence rachis much less 

than 1.5 times the length of the subtending leaf, with fewer than 16 

nodes; abaxial surface of leaflets usually without tannin deposits, but if 

so, then evenly scattered; widespread in Mexico and Central America ...... 

  ........................................................................... C. caribaea var. caribaea 
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17. Abaxial leaflet surfaces without purplish tannin deposits; trees, shrubs, and 

subshrubs; West Indies, Mexico, Central America, and South America. 

20. Ovary and sometimes developing legume stipitate-glandular; calyx lobes 

7–9 mm, as long or longer than the keel petals; largest leaves with 21–27 

narrowly elliptic leaflets; Mexico (western Chiapas and adjacent Oaxaca) .... 

  .............................................................................. C. caribaea var. chiapensis 

20. Ovary granuliferous to villous or woolly, developing legume eglandular; 

calyx lobes less than 7 mm, shorter than the keel petals but if longer then 

leaves with fewer than 15 leaflets; largest leaves with 5–21(–25) narrowly 

to widely elliptic leaflets .............................................................................21. 

21. Petals whitish to yellow; inflorescence with internodes mostly ≥3 mm 

long; leaves with (9–)13–21(–25) narrowly to widely elliptic leaflets; 

ovary villous to woolly, rarely granuliferous; legume villous to woolly, 

rarely glabrous ........................................................................................22. 

22. Pedicels 5–8 mm long at anthesis; calyx attenuate at base; ovary 

woolly, with 17 or 18 ovules; legume 5–7 mm wide; inflorescence 

rachis eglandular; Colombia (Valle del Cauca and Nariño) ................... 

  ........................................................................................ C. astragalina 

22. Pedicels 2–4 mm long at anthesis; calyx rounded at base; ovary 

villous to granuliferous, with 22–30 ovules; legume 2.5–4.0 mm 

wide; inflorescence rachis stipitate glandular, rarely eglandular; 

widespread .................................................... C. caribaea var. caribaea 
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21. Petals yellow; inflorescence with internodes mostly <3 mm long; leaves 

with 5–7(–9) widely-elliptic leaflets; ovaries granuliferous; legume 

glabrous; coastal Ecuador and Peru, and northern Bolivia .......................... 

  .............................................................................................. C. ochroleuca 

 

Coursetia astragalina (Kunth) Lavin, comb. nov. Tephrosia astragalina Kunth, Nov. Gen. Sp. 

(quarto ed.) 6: 464–465. 1823. Cracca astragalina (Kunth) Kuntze, Revis. gen. sp. 1: 174. 

1891. Coursetia caribaea var. astragalina (Kunth) Lavin, Syst. Bot. Monogr. 21: 129, 

1988. TYPE: Ecuador. CHIMBORAZO: Penipe, Jul 1802 (fide Sandwith 1925) Humboldt & 

Bonpland s. n. (holotype: P-HBK, microfiche IDC 6209.165:I.1, photo P00660155 at 

https://explore.recolnat.org/search/botanique/simplequery=tephrosia%2520astragalina). 

Small trees and shrubs mostly 2–3 m tall. Stems erect; branches hispid. Root system 

unknown. Leaflets 17–23 per leaf, 15–27 mm long, 7–11 mm wide, elliptic, both surfaces 

sericeous, without tannin deposits, venation not impressed above. Inflorescence rachis 3–10 cm 

long, equaling the subtending leaf, with up to 25 nodes, internodes about 3 mm long, hispid, 

eglandular; floral bracts 3–4 mm long, caducous; pedicels 5-8 mm long at anthesis. Calyx 

attenuate at base, sericeous, lobes 3–4 mm long, narrowly lanceolate. Banner petal 11–12 mm 

long, whitish; wings 11–12 mm long, whitish; keel 11–12 mm long, whitish. Ovary woolly, with 

17–18 ovules. Legume 5–7 mm wide, villous to woolly. 

Phenology—Flowering sporadically from February through September, fruiting specimens 

from September. 

Distribution—Known from SDTFs of the southern Colombian provinces of Nariño and Valle 

del Cauca, and perhaps disjunct in the province of Chimborazo, Ecuador, the putative type 

https://explore.recolnat.org/search/botanique/simplequery=tephrosia%2520astragalina
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locality (Fig. 3a; see Lavin 1988); mostly 1000–1900 m but two specimens come from 600–800 

m. Label data report the habitat to be dry streambeds and generally disturbed settings. 

Additional Specimens Examined—(1ITS, 2trnD-trnT GenBank accession). Colombia. 

NARIÑO: Río Guaitara, 1.057197 N, 77.448272 W, André 3188 (F, GH, NY, US), 1KX235187; 

Carr. Panamerican, Pasto, Puente Juanambú, 1.514761 N, 77.310419 W, Benavides 3657 (NY), 

1KX235193, 2KX235222; Alto de Bomboná, Consacá, 1.202215 N, 77.447204 W, Benavides 

5161 (NY), 1KX235190, 2KX235220; Yacuanquer, Minda, Garganta 527 (F); Consacá. 

Corregimiento de Bomboná, 1.202215 N, 77.447204 W, Ramírez 953 (NY), 1KX235192, 

2KX235221; Río Guaitara, Pasto, Triana 4260 (NY, US), 1KX235191. VALLE DEL CAUCA: 

Cordillera Occidental, La Cumbre, Cuatrecasas 19624 (F); Hacienda Valparaíso, Dryander 2159 

(US); Espinal, below Dagua, Killip & Hazen 11083 (GH, NY, US), 1KX235189; Río Dagua. 

Forests of Cali, 3.634125 N, 76.670108 W, “B. T.” 1165 [possibly B. T. Lehman] (NY), 

1KX235188. 

Taxonomic Comments—Coursetia astragalina is like C. ochroleuca in its inflorescence with 

numerous apically congested flower buds and a densely hispid stem and leaf vestiture. It differs 

from C. ochroleuca and C. caribaea by the combination of its pedicels that measure 5–8 mm 

long, legumes 5–7 mm wide, young stems that are densely hispid, and an occasional treelet habit. 

Correlated with these features are several other characters that are variable in Coursetia 

ochroleuca and C. caribaea but almost invariable in C. astragalina: 17–23 uniformly sized 

leaflets per leaf that are equally sericeous on both surfaces, banner petal whitish, and 11–12 mm 

long, calyx tubes narrowly campanulate and attenuate at base, calyx lobes narrowly lanceolate, 

and ovaries woolly. 
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The nrDNA ITS and combined nrDNA ITS and trnD-trnT analyses suggest that Coursetia 

astragalina is sister to the rest of the Coursetia grandiflora clade (Figs. 1-2, Fig. S1). 

Geographically, this makes sense because Coursetia astragalina is distributed just to the north of 

the other four species of the Coursetia grandiflora clade in the seasonally dry forests of the 

northern and central Andes, and branching order (Fig. 1; the Coursetia grandiflora clade) follows 

the north to south distribution (Fig. 3a). However, morphology is not strongly suggestive of this 

relationship (see above key to species). The only hint of a relationship with the Coursetia 

grandiflora clade involves the leaves of C. astragalina with leaflets that are not distally 

accrescent. Rather, they are relatively numerous (17-23 per leaf), uniformly sized, and elliptic in 

outline, like the leaves and leaflets produced by the rest of the Coursetia grandiflora clade. The 

distal leaflets of the leaves of C. caribaea and closely related species, in contrast, tend to develop 

leaves with fewer leaflets and a conspicuously larger length and width of the terminal leaflets 

compared to the medially and basally positioned leaflets. 

 

Coursetia diversifolia (Liebm.) M.Sousa & Lavin, comb. nov. Balboa diversifolia Liebm., 

Vidensk. Meddel. Dansk Naturhist. Foren. Kjøbenhavn 1853: 106. 1854, non Cracca 

diversifolia Rose, 1909. Cracca pacifica M.Sousa & Lavin, nom. nov., Brittonia 38: 302. 

1986. Coursetia caribaea (Jacq.) Lavin var. pacifica (M.Sousa & Lavin) Lavin, Syst. Bot. 

Monogr. 21: 128, 1988.TYPE: Mexico. OAXACA: inter Chacalapa et S. Jago Estata [Santiago 

Astata], Nov 1842, Liebmann 4626 (holotype: C!; isotype: US!). 

Subshrubs and shrubs 30–80 cm tall. Stems erect to ascending; branches hispid with dull 

reddish trichomes. Root system unknown. Leaflets 3 per leaf, 31–100 mm long, 17–50 mm wide, 

the terminal one (60–100 mm long, 30–50 mm wide) 2–3 times longer than the lateral leaflets, 
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elliptic, glabrous and glossy to sparsely strigose above, pilose beneath, tannin deposits absent, 

venation not impressed above. Inflorescence rachis 2–4 cm long, shorter than the subtending 

leaf, with up to 20 nodes, internodes more than 3 mm long, hispid with reddish trichomes, 

eglandular; floral bracts 4–10 mm long, often persistent; pedicels 1.5–2.0 mm long at anthesis. 

Calyx rounded at base, hispid, lobes 3–4 mm long, lanceolate. Banner petal 7–8 mm long, 8–9 

mm wide, yellow, veins suffused with red; wings 7.0–7.5 mm long, yellow; keel 7–8 mm long, 

yellow. Ovary granuliferous, with 15–16 ovules. Legumes up to 6.0 cm long, ca. 5 mm wide, 

valves glabrous, reticulate-veined, brown, elastically dehiscent. Seeds 2–3 mm diam., brown. 

Phenology—Flowering specimens were collected during September, November, and 

December, and fruiting specimens from April and June. Perhaps flowering and fruiting 

sporadically throughout the year. 

Distribution—Coursetia diversifolia is known from SDTFs near the coast of southern 

Oaxaca, Mexico (Fig. 3b); 30–400 m. 

Additional Specimens Examined—(1ITS, 2trnD-trnT GenBank accession). Mexico. OAXACA: 

Distrito Pochutla. Mpio. San Miguel del Puerto, Puente Zimatán, 7.8 km al N hacia Santa María 

Xadani, 15.878334, 96.022203, Rivera 2310 (MEXU); Dist. Pochutla. Mpio. San Miguel del 

Puerto, 15.87 N, 96.03 W, Saynes 2314 (MEXU), 1KT281087, 2KP990786; Dist. Tehuantepec. 

Mpio. Santiago Astata, El Chorro, 15.99 N, 95.67 W, Castrejón 563 (MEXU), 1KT281086; Dist. 

Tehuantepec. Mpio. San Pedro Huamelula, camino a Chacalapa, 2.4 km al N de la carretera 

costera, 450 m al E de la brecha. 15.890022 N, 95.926101 W, Rivera 2354 (MEXU); Distrito 

Tehuantepec. Mpio. San Pedro Huamelula, San Isidro Chacalapa, 7 km al Sur, 15.891962, 

95.922203, Salas 2897 (MEXU); Dist. Tehuantepec. Mpio. San Pedro Huamelula, 16.03 N, 

95.67 W, Salas 3625 (MEXU), 1KT281088, 2KP990788; Dist. Tehuantepec. Mpio. Santiago 
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Astata, Chacapala, 15.92 N, 95.92 W, Saynes 2809 (MEXU), 1GQ996224, 2KP990785; Dist. 

Yautepec. 11 km N Ayutla, 15.91 N, 95.85 W, Martínez 33249 (MEXU), 1KT281089, 

2KP990787. 

Taxonomic Comments—Coursetia diversifolia is perhaps sympatric with C. caribaea var. 

caribaea in southern Oaxaca but collections of both taxa from the same locality are yet 

unknown. Morphologically, C. diversifolia is like C. caribaea var. trifoliolata in that both have 

leaves with exactly three leaflets and ovaries with relatively few ovules (15–16). However, C. 

diversifolia differs in having a terminal leaflet 2–3 times as long or longer than the lateral two 

leaflets, subulate stipules up to 10 mm long, mostly persistent floral bracts, and calyces and 

inflorescence rachises densely reddish to silvery hispid (Sousa and Lavin 1986). Coursetia 

diversifolia shares the last two features with C. guatemalensis. Aside from the large terminal 

leaflet of the trifoliolate leaf, the persistent axillary inflorescence rachis is also diagnostic of C. 

diversifolia. It measures 2–4 cm long and is generally silvery hairy and with persistent floral 

bracts. 

Phylogenetic analyses of the nrDNA ITS and trnD-trnT data strongly suggest a sister group 

relationship of C. diversifolia and C. ochroleuca (Figs 1-2). These phylogenetic results contrast 

to both the lack of distinctive morphological similarities shared between these two species and 

their wide geographical separation (Fig. 3b). Sister species of Coursetia often occupy 

geographically adjacent regions (e.g., Queiroz and Lavin 2011; Fig. 3a). 

 

COURSETIA OCHROLEUCA (Jacq.) J.F.Macbr., Publ. Field Mus. Nat. Hist., Bot. Ser. 13, pt. 3: 389. 

1943. Galega ochroleuca Jacq., Icon. Pl. rar. 1: 15, pl. 150. 1787. Benthamantha 

ochroleuca (Jacq.) Alef., Bonplandia 10: 264. 1862. Tephrosia ochroleuca (Jacq.) Pers., 
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Syn. pl. 2: 329. 1807. Cracca ochroleuca (Jacq.) Benth., Vidensk. Meddel. Dansk. 

Naturhist. Foren. Kjøbenhavn 1853: 9. 1854. Brittonamra caribaea (Jacq.) Kuntze var. 

ochroleuca (Jacq.) Kuntze, Revis. Gen. pl. 1: 165. 1891. Coursetia caribaea (Jacq.) Lavin 

var. ochroleuca (Jacq.) Lavin, Syst. Bot. Monogr. 21: 128, 1988.TYPE: Cultivated from 

seed of unknown origin but very likely from coastal Ecuador or Peru (holotype: not located 

(see Lavin 1988); line drawing with protologue: 

http://biodiversitylibrary.org/page/270623). 

Tephrosia glabrescens Benth., Bot. Voy. Suphur 81. 1844. Cracca glabrescens (Benth.) Benth., 

Vidensk. Meddel. Dansk. Naturhist. Foren. Kjøbenhavn 1853: 9. 1854. Benthamantha 

glabrescens (Benth.) Alef., Bonplandia 10: 264. 1862. Brittonamra caribaea (Jacq.) 

Kuntze var. glabrescens (Benth.) Kuntze, Revis. Gen. pl. 1: 165. 1891. TYPE: Colombia 

(probably Ecuador; see Lavin 1988), Sinclair s. n. (holotype: K!; photo: F). 

Shrubs 0.5–2 m tall. Stems erect; branches hispid. Root system unknown. Leaflets 5–7(–9) 

per leaf, 11–64 mm long, 6–40 mm wide, widely elliptic, glabrate above, pilose beneath, with 

very faint tannin deposits along veins on the adaxial surface, venation not impressed above. 

Inflorescence rachis 3–10 cm long, equaling or slightly longer than the subtending leaf, with up 

to 30 nodes, internodes mostly <3 mm long, hispid, eglandular; floral bracts 2–5 mm long, 

caducous; pedicels 2–3 mm long at anthesis. Calyx rounded at base, sericeous, lobes 2–5 mm 

long, narrowly lanceolate. Banner petal 9–12 mm long, 10–12 mm wide, yellow; wings 10–12 

mm long, yellow; keel 10.0–11.5 mm long, yellow. Ovary granuliferous, with 22–30 ovules. 

Legume 3–4 mm wide, glabrous. 

Phenology—Flowering and fruiting specimens come from December through May and 

September. 

http://biodiversitylibrary.org/page/270623
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Distribution—Known from coastal and Pacific-slope SDTFs of Ecuador and northern Peru 

(from Lima northward) and into interior northern Peru along the Río Marañon and southward 

into west-central Bolivia in the Yungas region (Fig. 3b); disturbed areas along roadsides and 

cultivated fields, and on steep, rocky slopes; mostly 0–200 but some specimens up to1800 m. 

Additional Specimens Examined—(1ITS, 2trnD-trnT GenBank accession). Bolivia. LA PAZ: 

Yungas, 16.215987 S, 67.824221 W, Rusby 2355 (F, NY), 1KX235218. 

Ecuador. CHIMBORAZO: vicinity of Huigra, Hacienda de Licay, 2.292697 S, 78.987613 W, 

Rose & Rose 22621 (GH, NY), 1KX235215. ESMERALDAS: W side of Esmeraldas, Hudson 709 

(MO); 1.5 km S of Esmeraldas, 0.936732 N, 79.654807 W, Hudson 758 (MO). GUAYAS: 1 km S 

of Recinto Olon, Gentry 10030 (MO); Guayaquil, 2.183765 S, 79.951295 W, Pavón s. n. (G). 

LOJA: La Forma, Espinosa 505 (US); 2 Km W Tambo Negro on Macará-Sozoranga Rd, 

4.382974 S, 79.866893 W, Kessler 2706 (NY), 1KX235214. MANABÍ: El Recreo, 0.979561 S, 

80.662733, Eggers 15065 (F), 15490 (F, GH, NY), 1KX235217; roadside near Jipipapa, 

1.363028 S, 80.607371 W, Haught 3391 (F, NY), 1KX235216; Km 6 Machalilla-Puerto Cayo, 

1.435631 S, 80.754306 W, Klitgaard 564 (MONT), 1AF398847, 2KP990789; Portoviejo et 

Guayaquil, Mille 1981 (F). 

Peru. CAJAMARCA: Yunán, 7.25 S, 79.08 W, Delgado 2100 (MEXU), 1KT281085, 

2KP990791; Magdalena. Amillás antes de Magdalena, carr. Chilete-Magdalena, 7.248928 S, 

78.667962 W, Sánchez Vega 2082 (NY), 1KX235219; Jaen. past 55 km mark from Jaen to San 

Ignacio, 5.46 S, 78.83 W, Särkinen 2183 (FHO, MONT), 1KT281083, 2HQ158026. LA 

LIBERTAD: 40 km E of Trujillo, 8.018266 S, 78.719478 W, Hudson 1187 (MO); Cementerio de 

Trujillo, Sánchez 6290 (US). LAMBAYEQUE: Olmos, 5.92 S, 78.55 W, Delgado 2063 (MEXU), 

1KT281084, 2KP990790; alrededores de Reque, 6.854949 S, 79.824387 W, Llatas 386 (MO). 
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LIMA: km 56, carretera Lima-Oroya, Ferreyra 11076 (US); valley E of Sayán, Goodspeed 33039 

(GH, MO, UC, US); Chosica, 11.921909 S, 76.701995 W, Macbride & Featherstone 492 (F); 

Chancay, Ruiz & Pavón s. n. (F, G). 

Taxonomic Comments—Coursetia ochroleuca is most like C. astragalina and shrubby forms 

of C. caribaea. It is easily distinguished from the former by its yellow flowers, granuliferous 

ovaries with more than 21 ovules, and leaves with 5–7(–9) leaflets having mostly glabrate 

adaxial surfaces. From Coursetia caribaea, it is readily separated by the combination of its 

leaves with 5–7 widely elliptic leaflets with tannins faintly deposited along the veins of the 

adaxial surface, an eglandular inflorescence rachis with closely spaced nodes, several to many 

floral buds congested apically on a rachis, granuliferous ovaries, and glabrous legumes. 

Although some of these features occur independently on individuals of C. caribaea especially 

from North America, they seem to be consistent and fixed in this unique combination in C. 

ochroleuca. Additionally, the legumes of C. ochroleuca are usually congested along the 

inflorescence rachis because of the closely spaced nodes. This feature is otherwise found in 

Coursetia guatemalensis, which is distantly related to C. ochroleuca. As commented under 

Coursetia astragalina, no morphological evidence suggests a close relationship between C. 

astragalina and C. ochroleuca. 
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TABLE 1. Summary of the 11 Robinieae genera and 77 species sampled for DNA sequence data from the nrDNA ITS region. 

Genus Species 

# 

(77 total) 

# sampled species/accessions 

(species not sampled) 

Geographic distribution SDTF, tropical wet 

forests, pine-oak 

woodlands 

Gliricidia Kunth 5 5/51 Mesoamerica SDTF, tropical wet 

forests, pine-oak 

woodlands 

Poitea Ventenat 12 11/34 

(Poitea longifolia Urb.) 

Cuba, Hispaniola, Puerto 

Rico, Virgin Islands, 

Dominica 

SDTF, tropical wet 

forests, pine woodlands 

Hebestigma Urb. 1 1/9 Cuba SDTF 

Lennea Klotzsch 3 3/5 Mesoamerica SDTF, tropical wet 

forests 

Robinia L. 4 4/12 Southern USA, northern Sierra 

Madre Occidental, Mexico 

Temperate deciduous 

forests 

Poissonia Baill. 5 5/33 Southern Andes, Peru, 

Bolivia, northern Argentina 

SDTF, Arequipa and 

monte deserts 

Sphinctospermum 

Rose 

1 1/9 Southwestern USA, Pacific 

coastal Mexico 

SDTF 

Genistidium 

I.M.Johnston 

1 1/3 Chihuahuan Desert, Mexico 

and USA 

SDTF 
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Peteria A.Gray 4 3/5 

(Peteria pinetorum C.L.Porter) 

Mainly southwestern USA and 

northern Mexico 

SDTF, temperate shrub 

steppe 

Olneya A.Gray 1 1/12 Sonoran Desert, Mexico and 

USA 

SDTF 

Coursetia DC. 40 38/265 

(Coursetia intermontana Lavin 

and C. tumbezensis MacBride) 

Southwestern USA, 

Mesoamerica, South America, 

Lesser Antilles 

SDTF, pine-oak 

woodlands 
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TABLE 2. Results of the evolutionary rates analysis of nrDNA ITS sequences. Reported rate and age estimates compare to an 

overall expected mean rate of 0.0025 substitutions per site per Ma (2.5 × 10-9 substitutions per site per year) and an expected mean age 

of 8.6 Ma for 72 nrDNA ITS stem clades of species of Robinieae (Pennington and Lavin 2016). Our overall mean rate of substitution 

for the nrDNA ITS region is slightly faster than a woody plant mean estimate of 2.15 × 10-9 substitutions per site per year (Kay et al. 

2006). 

Clade MRCA of: Mean 

rate 

Standard 

deviation 

Mean 

age 

Standard 

deviation 

Coursetia astragalina crown Coursetia caribaea 

astragalina KX235193 

Coursetia caribaea 

astragalina KX235187 

0.0034 0.0003 0.0 0.0 

Coursetia astragalina stem Coursetia caribaea 

astragalina KX235193 

Coursetia gracilis 

KX235182 

0.0040 0.0002 11.0 1.3 

Coursetia ochroleuca crown Coursetia caribaea 

ochroleuca KX235216 

Coursetia caribaea 

ochroleuca AF398847 

0.0012 0.0008 1.5 0.6 

Coursetia ochroleuca stem Coursetia caribaea 

ochroleuca KX235216 

Coursetia caribaea pacifica 

GQ996224 

0.0025 0.0005 7.7 1.4 

Coursetia diversifolia crown Coursetia caribaea pacifica 

KT281089 

Coursetia caribaea pacifica 

GQ996224 

0.0024 0.0007 0.0 0.0 

Coursetia diversifolia stem Coursetia caribaea 

ochroleuca KX235216 

Coursetia caribaea pacifica 

GQ996224 

0.0025 0.0005 7.7 1.4 

Other clades       
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Coursetia caribaea var. 

sericea crown 

Coursetia caribaea sericea 

GQ996226 

Coursetia caribaea sericea 

KT281104 

0.0017 0.0008 0.0 0.0 

Coursetia caribaea var. 

sericea stem 

Coursetia caribaea sericea 

GQ996226 

Coursetia caribaea 

KT281097 

0.0017 0.0006 4.2 0.7 

Coursetia caribaea var. 

trifoliolata crown 

Coursetia caribaea 

trifoliolata KT281079 

Coursetia caribaea 

trifoliolata AF542463 

0.0016 0.0007 3.0 0.5 

Coursetia caribaea var. 

trifoliolata stem 

Coursetia caribaea 

trifoliolata KT281079 

Coursetia caribaea 

GQ996223 

0.0014 0.0007 7.2 1.2 

Coursetia caribaea var. 

tomentosa stem 

Coursetia caribaea 

tomentosa GQ996225 

Coursetia pumila 

AF542462 

0.0011 0.0007 2.0 0.5 
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TABLE 3. Results of the evolutionary rates analysis of trnD-trnT sequences. Reported rate and age estimates compare to an 

overall mean rate of 0.0008 substitutions per site per Ma (0.8 × 10-9 substitutions per site per year) and an expected mean age of 7.9 

Ma for 28 trnD-trnT stem clades of species of Robinieae (M. Lavin unpubl. data). 

Clade MRCA of: Mean 

rate 

Standard 

deviation 

Mean 

age 

Standard 

deviation 

Coursetia astragalina crown Coursetia caribaea 

astragalina KX235220 

Coursetia caribaea 

astragalina KX235222 

0.0009 0.0002 0.0 0.0 

Coursetia astragalina stem Coursetia caribaea 

astragalina KX235220 

Coursetia hassleri 

KP990771 

0.0008 0.0002 4.2 1.2 

Coursetia ochroleuca crown Coursetia caribaea 

ochroleuca KP990790 

Coursetia caribaea 

ochroleuca KP990791 

0.0008 0.0002 0.3 0.1 

Coursetia ochroleuca stem Coursetia caribaea pacifica 

KP990785 

Coursetia caribaea 

ochroleuca KP990789 

0.0008 0.0002 2.9 0.6 

Coursetia diversifolia crown Coursetia caribaea pacifica 

KP990785 

Coursetia caribaea pacifica 

KP990786 

0.0008 0.0002 0.0 0.0 

Coursetia diversifolia stem Coursetia caribaea pacifica 

KP990785 

Coursetia caribaea 

ochroleuca KP990789 

0.0008 0.0002 2.9 0.6 
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FIG. 1. Bayesian majority rule consensus phylogeny of the nrDNA ITS region sampled from 

the legume tribe Robinieae and outgroup tribes Sesbanieae and Loteae and showing only the 

relevant portion that includes the samples of Coursetia caribaea vars. astragalina, ochroleuca, 

and pacifica (see Fig. S1 for all 489 terminal taxa). Numbers above the branches are Bayesian 

posterior probabilities. Numbers below the branches are parsimony bootstrap percentages for 

selected clades also resolved in the strict consensus tree of the parsimony analysis. The label 

“Coursetia caribaea” at the top marks the crown clade of that species. Both the parsimony and 

Bayesian analysis resolved this clade. 

 

FIG. 2. Bayesian majority rule consensus phylogeny of the combined nrDNA ITS and trnD-

trnT region sampled from the legume tribe Robinieae and outgroup tribes Sesbanieae and Loteae 

and showing part of the phylogeny with all Coursetia samples, primarily those of C. caribaea 

var. caribaea, C. astragalina, C. ochroleuca, and C. diversifolia (see Fig. S3 for all 181 terminal 

taxa). Numbers above the branches are Bayesian posterior probabilities. Numbers below the 

branches are parsimony bootstrap percentages for selected clades also resolved in the strict 

consensus tree of the parsimony analysis. 

 

FIG. 3. Geographic distribution of DNA samples of Coursetia species. A. Distribution of 

Coursetia astragalina (C. caribaea var. astragalina) and the rest of the Coursetia grandiflora 

clade. B. Distribution of Coursetia caribaea var. caribaea, C. ochroleuca (C. caribaea var. 

ochroleuca), and C. diversifolia (C. caribaea var. pacifica). These sites encompass the 

geographic extent of each of these taxa (e.g., Lavin 1988; Supplemental Map). Samples of 

Coursetia caribaea var. caribaea came from sites located near those of the other seven varieties 
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of this species. Coursetia caribaea var. caribaea is relatively uncommon in South America; 

hence, samples from Colombia, Ecuador, Peru, and Bolivia are few. The mean annual 

precipitation model comes from Fick and Hijmans (2017). 


