19 research outputs found

    Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data

    Get PDF
    Motivation: High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. Results: We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. Availability: The R package absfilter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance

    Opposite Effects of Mn2+ and Zn2+ on PsaR-Mediated Expression of the Virulence Genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae▿

    Get PDF
    Homeostasis of Zn2+ and Mn2+ is important for the physiology and virulence of the human pathogen Streptococcus pneumoniae. Here, transcriptome analysis was used to determine the response of S. pneumoniae D39 to a high concentration of Zn2+. Interestingly, virulence genes encoding the choline binding protein PcpA, the extracellular serine protease PrtA, and the Mn2+ uptake system PsaBC(A) were strongly upregulated in the presence of Zn2+. Using random mutagenesis, a previously described Mn2+-responsive transcriptional repressor, PsaR, was found to mediate the observed Zn2+-dependent derepression. In addition, PsaR is also responsible for the Mn2+-dependent repression of these genes. Subsequently, we investigated how these opposite effects are mediated by the same regulator. In vitro binding of purified PsaR to the prtA, pcpA, and psaB promoters was stimulated by Mn2+, whereas Zn2+ destroyed the interaction of PsaR with its target promoters. Mutational analysis of the pcpA promoter demonstrated the presence of a PsaR operator that mediates the transcriptional effects. In conclusion, PsaR is responsible for the counteracting effects of Mn2+ and Zn2+ on the expression of several virulence genes in S. pneumoniae, suggesting that the ratio of these metal ions exerts an important influence on pneumococcal pathogenesis

    New Dinuclear Macrocyclic Copper(II) Complexes as Potentially Fluorescent and Magnetic Materials

    No full text
    Two dinuclear copper(II) complexes with macrocyclic Schiff bases K1 and K2 were prepared by the template reaction of (R)-(+)-1,1′-binaphthalene-2,2′-diamine and 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde K1, or 4-tert-butyl-2,6-diformylphenol K2 with copper(II) chloride dihydrate. The compounds were characterized by spectroscopic methods. X-ray crystal structure determination and DFT calculations confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of K2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The magnetic study revealed very strong antiferromagnetic CuII-CuII exchange interactions, which were supported by magneto-structural correlation and DFT calculations conducted within a broken symmetry (BS) framework. Complexes K1 and K2 exhibited luminescent properties that may be of great importance in the search for new OLEDs. Both K1 and K2 complexes showed emissions in the range of 392–424 nm in solutions at various polarities. Thin materials of the studied compounds were deposited on Si(111) by the spin-coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), and fluorescence spectroscopy. The thermally deposited K1 and K2 materials showed high fluorescence intensity in the range of 318–531 nm for K1/Si and 326–472 nm for the K2/Si material, indicating that they could be used in optical devices

    Expression changes and chromatin architecture modifications in WBS cells.

    No full text
    <p>Changes in expression and chromatin structure in WBS (GM13472) versus Ctrl (GM07006) cells. Changes in histone marks are presented as the log2-fold ratio between WBS and Ctrl cells. Statistical analysis was performed by a 2-sample t-Test. Values in italics are not statistically different.</p><p>AREL  =  average relative expression level, BDL  =  below detection line, NS  =  no regions within gene were defined as significantly changed,</p><p>*most significant block according to SICER within the gene (FDR<1%).</p

    Extensive chromatin interactions of seven genes flanking the WBSCR on human chromosome 7 (HSA7) in cells from a healthy control individual.

    No full text
    <p>(<b>A</b>) Windowed and normalized 4C signal of each of the seven viewpoints along the entire HSA7. The black ticks below each graph show the location of the Bricks (Blocks of Regulators In Chromosomal Kontext). The gene density across HSA7, as well as the windowed profiles of H4K20me1 and H3K27me3 marks in the same cell line are shown below. Some examples of strong correlation of gene-dense regions and high density of H4K20me1 marks with highly interacting regions are highlighted in blue. The mapping of the assessed genes/viewpoints and of the WBSCR is indicated at the bottom. The red box specifies the close-up shown in panel B. (<b>B</b>) Close-up of the windowed 4C signal of the seven viewpoints around the WBSCR for the region indicated with a red box on HSA7 (top panel). The windowed 4C signal is shown in grey, while the profile corrected 4C signal (after removal of the highly interacting neighboring background signal) is overlaid in black. The position of all genes are displayed at the bottom, and the mapping of the assessed viewpoints is highlighted by red and green arrows indicating if the corresponding genes are down- or upregulated in cells from WBS patients, respectively. Black arrows underscore the mapping of the viewpoint that is not modified in gene expression (<i>ZNF107</i>) and the newly identified interacting partners <i>AUTS2</i> and <i>CALN1</i>. The location of the WBSCR is indicated by a purple horizontal bar. A close-up of interactions within this WBSCR is provided in <b>Supplementary <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0079973#pone.0079973.s004" target="_blank">Figure S4</a></b>.</p

    Population Variation and Genetic Control of Modular Chromatin Architecture in Humans

    Get PDF
    Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain

    Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.

    Get PDF
    MOTIVATION: High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. Results: We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays

    Structural variation-associated expression changes are paralleled by chromatin architecture modifications.

    Get PDF
    Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this "neighboring effect", we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO SERIES ACCESSION NUMBER: GSE33784, GSE33867
    corecore