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SUMMARY

Chromatin state variation at gene regulatory ele-
ments is abundant across individuals, yet we under-
stand little about the genetic basis of this variability.
Here, we profiled several histone modifications, the
transcription factor (TF) PU.1, RNA polymerase II,
and gene expression in lymphoblastoid cell lines
from 47 whole-genome sequenced individuals. We
observed that distinct cis-regulatory elements exhibit
coordinated chromatin variation across individuals
in the form of variable chromatin modules (VCMs)
at sub-Mb scale. VCMs were associated with thou-
sands of genes and preferentially cluster within chro-
mosomal contact domains. Wemapped strong prox-
imal and weak, yet more ubiquitous, distal-acting
chromatin quantitative trait loci (cQTL) that frequently
explain this variation. cQTLs were associated with
molecular activity at clusters of cis-regulatory ele-
ments andmappedpreferentially within TF-bound re-
gions. We propose that local, sequence-independent
chromatin variation emerges as a result of genetic
perturbations in cooperative interactions between
cis-regulatory elements that are located within the
same genomic domain.
INTRODUCTION

Understanding the genetic contribution and molecular paths to-

ward complex traits is one of the key outstanding challenges

in biology. Genome-wide studies revealed that most common

disease-associated genetic variants fall into gene regulatory se-

quences (Manolio, 2010; Maurano et al., 2012; Nica et al., 2010;
Nicolae et al., 2010) and affect transcriptional programs in

disease-implicated cell types (Fairfax et al., 2012; Grundberg

et al., 2012). Evolutionary studies have further uncovered several

instances of gene regulatory changes that are causally impli-

cated in complex phenotypes (Wray, 2007). These changes are

thought to originate mostly from variation in TF-DNA interac-

tions, which are well known to mediate the spatiotemporal

control of gene expression programs (Spitz and Furlong, 2012).

Understanding the extent of, and the mechanisms underlying,

TF DNA binding variation is therefore key to elucidate the molec-

ular determinants of complex phenotypes. Small-scale popula-

tion- and family-based studies have shown that 5%–25% of

TF-DNA binding events exhibit intra- and inter-individual binding

variation (Kasowski et al., 2010, 2013; Kilpinen et al., 2013;

McVicker et al., 2013; Reddy et al., 2012). These studies, as

well as those examining TF-DNA binding divergence among

mammalian species (reviewed in Villar et al. [2014]) showed

that only a minority of this variation could be attributed to genetic

differences within TF-bound sequences.

So far, few mechanisms have been proposed to clarify this

phenomenon, and these are mostly centered on changes in

either the local DNA structure or in collaborative interactions be-

tween co-bound TFs at cis-regulatory elements (Albert and Kru-

glyak, 2015; Heinz et al., 2013; Karczewski et al., 2011; Kilpinen

et al., 2013; Stefflova et al., 2013). Recently, others and we have

observed that several chromatin state components exhibit a

strong degree of coordinated allelic variation that extends over

several thousands of base pairs (Kilpinen et al., 2013; McVicker

et al., 2013). This observation suggests that variation in TF-DNA

binding might be conditioned on the state of other cis-regulatory

elements, but a general description of this effect has so far been

hampered due to sparseness of allelic markers.

Here, we measured ChIP-seq-based, population-level histone

modification (HM) and TF enrichment patterns. Specifically, we

mapped the regulatory TF PU.1, the second largest subunit of

RNA polymerase II (RPB2), and three well-studied HMs often
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Figure 1. Genome-wideAssociationsamong

Molecular Phenotypes

(A) Inter-individual association between the read

depth at H3K27ac and H3K4me1 ChIP-seq peaks

on chromosome 21 (26,000,000–28,000,000). The

pairwise association strength (Pearson’s p value)

is color coded and ranges from blue (p = 1) to red

(p < 1e-10). Chromosomal contact domains (Rao

et al., 2014) are shown with black boxes. See Fig-

ure S1H for molecular associations in this region

based on other marks.

(B) Significant associations between molecular

phenotypes in a 1 Mb window on chr21

(27,000,000–28,000,000). Circles indicate variable

(filled) or non-variable (open) enrichment of molec-

ular marks (i.e., ChIP-seq peaks or gene expres-

sion). Lines connecting filled circles represent

significant associations between molecular pheno-

types (FDR 0.1%).

(C) Selected individuals with either low (NA06986

and NA11992) or high (NA06985 and NA12489)

enrichment of molecular marks around the APP

gene locus.

(D) Distance distribution between coordinated mo-

lecular phenotypes.

(E) Annotation of cis-regulatory elements with co-

ordinated enrichment of molecular marks into pu-

tative enhancers (E) and promoters (P).

See also Figures S1, S2, and S3.
observed at enhancers and promoters (H3K4me1, H3K4me3,

and H3K27ac) in lymphoblastoid cell lines (LCLs) derived from

47 unrelated European individuals whose genomes were seq-

uenced in the frame of the 1000 Genomes Project (Abecasis

et al., 2010). In addition, we profiled gene expression using

mRNA sequencing in 46 LCLs. Our results provide unique in-

sights into the mechanisms underlying variation in molecular

activity at cis-regulatory elements, revealing that most of this

variation results from alterations in the modular organization of

the human genome.

RESULTS

Population-Level Variation in Molecular Activity at
cis-Regulatory Elements
Toassess theextentofquantitativecoordination in inter-individual

chromatin variation at putative cis-regulatory elements, we per-
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formed an association analysis between

molecular phenotypes, with ‘‘molecular

phenotype’’ being here defined as the

normalized and covariate-corrected read

depth of a histone-modified and TF-bound

region, respectively. Specifically, we esti-

mated the correlation levels between all

distinct TF-TF, HM-HM, and TF-HM com-

binations in 1 Mb cis windows (Figure 1A).

We tested a total of 29million associations

between any two molecular phenotypes

and estimated for each association pair

the enrichment of low p values using p1
statistics (Storey and Tibshirani, 2003). Estimates of p1 ranged

from 2.5% for PU.1-H3K4me3 to 11% for H3K4me1-H3K27ac

(FigureS1A), indicating extensive quantitative coordination inmo-

lecular activity levels between/at cis-regulatory elements. More-

over, molecular coordination decayed quickly with increasing

genomic distance and was 20-fold more enriched between prox-

imal cis-regulatory elements (<10 kb) than between any two cis-

regulatory elements that were separated by 500 kb or more

(Figure S1B).

Overall, we detected 79,411 statistically significant, mostly

positive (>99%) associations (at genome-wide correction) across

all molecular association tests (Pearson rmean = 0.70, FDR 0.1%)

(Figures 1B, 1C, S1C, and S1D), involving on average 20% of

all studied TF-bound/HM-enriched regions (Figure S1E). The his-

tonemarkH3K27ac exhibited the highest number and proportion

of significant associations with other phenotypes (Figures S1E

and S1F), suggesting that this molecular phenotype is most



Figure 2. Variable Chromatin Modules

(A) Molecularmark composition of variable chromatin modules (VCMs). Black bars (top) indicate the percentage of VCMswith specific combinations of molecular

marks (bottom). Inset shows the percentage of VCMs with a specific molecular mark.

(B) Coordination of molecular activity within VCMs. The heatmap illustrates for 47 individuals (rows) the normalized signal of molecular phenotypes (columns) that

belong to the VCM spanning the APP gene locus (as shown in Figures 1B and 1C). (Right column) The first principal component summarizes the majority (71%) of

molecular variation within this VCM.

(C) Percentage of molecular variation within VCMs that is explained by the first and second principal components. VCMswere divided according to the number of

cis-regulatory elements (domains). VCMs with R20 domains were grouped.

(D) Enrichment of covariable cis-regulatory elements within chromosomal contact domains (Rao et al., 2014). (Red) Covariable cis-regulatory elements; (blue)

random pairs of cis-regulatory elements. The probability indicates whether two covariable cis-regulatory elements are embedded within the same contact

domain as opposed to two distinct contact domains.

(E) Co-associations of TF-TF pairs at non-overlapping, covariable cis-regulatory elements. Positive and negative odds ratios indicate significant enrichment/

depletion of TF-TF pairs (p < 0.05 after Bonferroni correction).

See also Figures S2 and S3.
sensitive to coordinated chromatin state perturbations. As ex-

pected, the TFs PU.1 and RPB2 were preferentially associated

with enhancer- (H3K27ac/H3K4me1 for PU.1) and promoter-

marking HMs (H3K27ac/H3K4me3 for RPB2), respectively (Fig-

ure S1G). Except for RPB2-H3K4me3, the majority of all mo-

lecular associations were identified between non-overlapping

cis-regulatory elements (Figure S2A), which exhibit a log-normal

distance distribution that preferentially centered around 45 kb

(95% confidence interval [CI]: 7–308 kb) (Figures 1D and S2B).

The molecular association strength between covariable cis-reg-

ulatory elements decayed significantly with increasing distance

(r=�0.19, p< 2.2e-16, FigureS2C).Overall, 25%of allmolecular

associations were found between promoters and enhancers

(>5 kb from transcription start site [TSS]), 25%within or between

promoters, and 50% within or between putative enhancers (Fig-

ure 1E). These results suggest extensive molecular coupling be-

tween cis-regulatory elements and a strong degree of chromatin

variation at enhancer-like regions.

The previous results indicate that chromatin state variation

might reflect high-order genomic interactions. Using simple

graph-based methods, we could map individual molecular
associations into 14,559 distinct ‘‘variable chromatin modules

(VCMs)’’ that are composed of 25,417 distinct cis-regulatory

elements (see Figures 1B, 1C, and S3A–S3C for examples). The

median size of a single VCMwas 4.2 kb, and all molecular pheno-

types contained within VCMs together covered 5% (161 Mb) of

thehumangenome.Althoughonly 25%ofVCMswere composed

of multiple cis-regulatory elements (Figure S3D), these ‘‘multi-

VCMs’’ captured (1) the vast majority (78%) of molecular associ-

ations (Figure S3E), (2) weremore likely to contain promoter- and

enhancer-marking chromatinmarks (FigureS3F), and (3) covered

more DNA sequence (median size: 70 kb; Figure S3G).

The majority of VCMs (56%) were exclusively composed of

enhancer-marking signals (i.e., H3K4me1-PU.1, H3K4me1-

H3K27ac, and H3K4me1-H3K27ac-PU.1) (Figure 2A), indicating

that putative enhancers constitute the largest part of the var-

iable epigenome in a single human population, consistent with

comparative epigenomic studies across mammalian species

(Villar et al., 2015).

To examine the extent of molecular coordination within VCMs,

we tested whether the activity state of a VCM can be represented

by a single quantitative phenotype, rather than by individual
Cell 162, 1039–1050, August 27, 2015 ª2015 Elsevier Inc. 1041



molecular phenotypes that define a VCM. We applied principal

component (PC) analysis and extracted the first and second PC

for each VCM (Figure 2B). We found that the first PC already ex-

plains, onaverage, 79%of thevariability that is observedbetween

molecular phenotypes of the same VCM (Figure 2C), suggesting

that molecular activity is strongly coordinated within VCMs.

This high degree of molecular coordination within VCMs

implies a higher-order chromatin organization, consistent with

the now well-accepted notion that mammalian genomes are

spatially arranged in distinct chromosomal contact domains

(Dixon et al., 2012; Rao et al., 2014). To test this hypothesis,

we analyzed published, high-resolution, and genome-wide chro-

matin conformation data from a human lymphoblastoid cell

line (Rao et al., 2014) and found that cis-regulatory elements

with coordinated chromatin state variation were more pre-

ferentially embedded within the same chromosomal contact

domain (odds ratio = 14.9, p = 2.2e-16, logistic regression) (Fig-

ure 2D; see Figures 1A and S1H-S1I for examples). We also

observed that cis-regulatory elements of the same VCM ex-

hibited more frequently allelic chromatin biases along the same

haplotype (OR = 1.3, p = 4.9e-5, logistic regression), further

indicating that VCM define a regulatory unit. Moreover, analysis

of genome-wide TF-DNA binding data of the architectural

proteins CTCF and cohesin (RAD21/SMC3) (Ong and Corces,

2014) revealed a significant enrichment at cis-regulatory ele-

ments that participate in long-range (>300–500 kb) molecular

associations (Figures S2D–S2F). Together, these results support

our hypothesis that VCMs represent a fine-grained, modular

architecture of the variable human epigenome.

Next, we aimed to elucidate mechanisms that may be respon-

sible for the emergence of VCMs. Here, we hypothesized that

modular chromatin state dynamics may not only be driven by

short-range cooperative TF-TF interactions, as shown earlier

(Karczewski et al., 2011; Kasowski et al., 2010; Kilpinen et al.,

2013; Zheng et al., 2010), but also by interactions that act over

long genomic distances and across cis-regulatory elements.

To test this hypothesis, we investigated whether particular

TF-TF pairs exhibited preferential enrichments at pairs of cis-

regulatory elements that are part of the same VCM using ex-

perimentally defined TF-DNA binding data (ENCODE Project

Consortium, 2012). This analysis revealed 204 putative cooper-

ative TF-TF pairs that are preferentially enriched at VCM-defined

cis-regulatory elements (OR = 1.1-3.2; p < 0.05 after Bonferroni

correction; Fisher’s exact test) (Figure 2E). For example, NFKB

emerged as the most cooperative TF among all tested factors

and was preferentially associated with well-known immunity-

associated TFs (e.g., STAT3, BCL11A, BATF, and PU.1). Thus,

our results suggest that modular chromatin dynamics occur

within spatially organized domains of the genome and are likely,

in part, mediated by long-range cooperative interactions be-

tween TFs that determine themolecular identity of a lymphoblas-

toid cell (Zhou et al., 2015).

Chromatin Variation Reflects Inter-Individual Variation
in Gene Expression
To assess the functional impact of inter-individual chromatin

state variation, we analyzed associations in cis between molec-

ular phenotypes at cis-regulatory elements and gene expression
1042 Cell 162, 1039–1050, August 27, 2015 ª2015 Elsevier Inc.
(TSS ± 1 Mb). This analysis resulted in significant associations

for 4,568 (22%) genes at a FDR of 0.1% (Figure S3H and see

Figures 3A, S3I, and S3J for examples). The vast majority

(99%) of chromatin-gene associations were positive (i.e., higher

gene expression levels correlated with stronger chromatin sig-

nals) (Figure S3K), explained about half of the variation in

gene expression (Figure S3L), and correlated independently

with multiple molecular events at cis-regulatory elements. Two-

thirds of all gene-associated cis-regulatory elements mapped

outside of promoters (TSS ± 2.5 kb) and thus likely pinpoint to

putative enhancer-gene interactions (Figures 3B and 3C). We

further measured allelic expression effects within individuals

and observed that, consistent with coordinated allelic chromatin

signals, they are more concordant with allelic chromatin states

at gene-associated regions than at random regions (OR = 1.9,

p = 2e-10, logistic regression). Together, these results provide

genome-wide evidence that population-level variation in chro-

matin states has functional consequences and that it is a

potential approach to identify the gene targets of putative cis-

regulatory elements.

We also observed that VCM states (as defined by the first PC)

were associated with 3,580 genes in cis (TSS± 1Mb; FDR 0.1%).

This analysis has further allowed us to uncover that only 5%

of ‘‘enhancer VCMs’’ (H3K27ac-H3K4me1-PU.1) varied along

with nearby genes despite representing the most abundant

class of VCMs. In strong contrast, variable promoter (H3K27ac-

H3K4me3-RPB2) and promoter-enhancer (H3K27ac-H3K4me3-

H3K4me1-RPB2-PU.1) VCMs correlated with gene expression

in up to 80% of the cases (Figure 3D). Moreover, 23% of all

gene-associated VCMs correlated with the expression levels of

multiple genes (Figure S3M), suggesting that these VCMs contain

cis-regulatory elements that are potentially shared across genes.

We also found that VCMs with several cis-regulatory elements

were more likely to reflect variable gene expression (Spearman’s

r = 0.91, p = 1.8e-8) (Figure 3E), suggesting that both the type

(promoter/enhancer) and number of variable cis-regulatory ele-

ments are key determinants underlying the transcriptional state

change of a gene.

We next assessed whether VCMs were located nearby spe-

cific sets of genes and found that VCMs embedding several

cis-regulatory elements were highly enriched in immunity-related

processes and pathways (Tables S2A and S2B), consistent

with the biological nature of lymphoblastoid cells. Functional

analysis of chromatin-associated genes further supported a

strong enrichment of VCMs in immunity-related processes

(Table S2C).

Genetic Control of Chromatin State and Gene
Expression Variation
To identify potential mechanisms that explain variation in TF-

DNA binding, HMs, VCM states, and gene expression, we

mapped quantitative trait loci (QTLs) for all studied molecular

phenotypes independently in a 500 kb cis-window around

the center of a candidate cis-regulatory element (or TSS). We

detected between 315 and 1,432 significant chromatin QTLs

(cQTLs, i.e., tfQTLs and hmQTLs) and eQTLs at 10% FDR. This

corresponds from 1.1% (H3K4me1) to 2.9% (mRNA) of the

studied regions and explained �40% of their variability (Figures



Figure 3. Association between Chromatin State and Gene Expression Variation

(A) Inter-individual co-variation between mRNA levels and H3K27ac enrichment signals at cis-regulatory elements on chromosome 21 (26,000,000–28,000,000).

The pairwise association strength (Pearson’s p value) is color coded and ranges from blue (p = 1) to red (p < 1e-10) (legend, see Figure 1A). Chromosomal contact

domains (Rao et al., 2014) are shown with black boxes.

(B) Distance distribution in log-space between the transcription start site (TSS) and cis-regulatory elements with expression-linked molecular phenotypes.

(C) Classification of gene-expression-linked cis-regulatory elements with molecular marks into putative enhancers and promoters (TSS ± 5 kb).

(D) Percentage of VCMs with gene expression associations (using the first principal component for VCM states) stratified by molecular mark compositions.

(E) Percentage of VCMs associated with gene expression stratified by VCM size (i.e., number of cis-regulatory elements that belong to a VCM).

See also Figure S3.
4 and S4). Of note, the number of discovered QTLs significantly

increased upon reduction of the cis-window size yet at the

expense of excluding distal effects (Figures S4A–S4C). Indels

and structural variants were significantly enriched among cQTLs

(Figure S5A), consistent with previous studies (Kasowski et al.,

2010; Schlattl et al., 2011). We further used allele-specific anal-

ysis to validate cQTLs on a genome-wide scale (Lappalainen

et al., 2013). We observed more significant allelic chromatin

biases at cQTLs as compared to control sites (Figure 4C) and

higher proportions of allelic chromatin biases at strong cQTLs

(Figure 4D), thus supporting our cQTL inference. In addition, we

mapped 1,173 vcmQTLs (8.1%) using the first PC as a quantita-

tive trait (comprising 4,187 individualmolecular phenotypes) and,

surprisingly, none using the secondPCdespite observing a small

enrichment of low p values (Figure S4G). This suggests that the

firstVCMstate captures theprimarygenetic contributions toward

VCM activity. Overall, we found that all molecular phenotypes

and, in particular, VCMs are affected by common genetic vari-

ants, supporting the hypothesis that a substantial proportion of

coordinated chromatin state variation is driven by cis-acting ge-

netic variation.
We further assessed the genomic location of cQTLs by

measuring their distance relative to TF-targeted and histone-

modified regions. We found that the resulting distances exhibit

bimodal log-normal distributions, with the first mode centering

very close to the mid-point of TF-bound sites (medians between

10 and 40 bp) and relatively close to the mid-point of HM regions

(medians between 230 and 300 bp), and the second mode being

located distally from its respective target region (medians be-

tween 20 and 30 kb) (Figure 4A). In contrast, when we tested

the distance relative to the closest TSS (Figure S5B), the log-

normal bimodal signal completely disappeared, suggesting

that the first mode derives from cQTLs falling within their respec-

tively TF or HM-enriched target regions (Figures S5C and S5D).

Although the proximally mapping cQTLs exhibited signifi-

cantly stronger effect sizes than cQTLs located outside of their

target elements (Figure 4B), they constituted only a minority

(25%) of all cQTLs. For example, we found that only 33% of

PU.1 QTLs mapped inside of PU.1-bound regions, demon-

strating that TF binding is strongly influenced by distal genetic

effects. This complexity indicates that, like gene expression,

sequence-specific TF-DNA binding can be considered as a
Cell 162, 1039–1050, August 27, 2015 ª2015 Elsevier Inc. 1043



Figure 4. Genetic Control of Chromatin

State Variation

(A and B) Quantitative trait locus (QTL) mapping for

TF-DNA binding and HMs. (A) Bimodal distance

distribution (in log10-space) between cQTLs and

their associated cis-regulatory elements (FDR

10%). (B) Relationship between cQTL strength and

genomic architecture. Boxplots demonstrate ge-

netic association strength (�log10 p value) for QTL

variants that map inside (red) and outside (blue) of

their target TF-bound/histone-modified regions.

Percentages refer to the proportion of cQTLs that

fall inside and outside of their target regions.

(C and D) Allele-specific (AS) signals at cQTLs. (C)

AS effect strength (�log10 binomial p value) at

heterozygous QTL (blue) and non-QTL variants

(red). (D) Estimated frequency of AS effects (using

p1 statistics) at heterozygous variants as a function

of cQTL strength (�log10 p value). For example,

83% of the heterozygous variants exhibit AS sig-

nals in PU.1 binding when considering genetic

variants that are associated with PU.1 binding

variation at p < 10�6.

See also Figures S4 and S5.
complex trait, similar to other molecular and organismal traits.

Moreover, we found that distally acting cQTLs exhibited dis-

tances that matched the extent of coordination within VCMs,

further supporting interactions across regions in the genome.

These observations suggest a dual mode of action for cQTLs:

strong cQTLs directly perturbing the proximal interactions that

form the local chromatin signal and more abundant yet weaker

cis-acting cQTLs exerting their effects over large distances (up

to hundreds of kilobases). The latter process likely involves

several intermediate molecular processes that operate within

the same VCM.

Given the high degree of quantitative coordination between

chromatin state components of the same VCM, we assessed

whether distinct molecular phenotypes were affected by the

same cQTL. We estimated that half of all cQTLs are shared

between two chromatin phenotypes, revealing a strong genetic

basis for coordinated chromatin state variation across individ-

uals (Figure 5A). In addition, we found that cQTL-eQTL sharing

ranged from a relatively moderate (24% of PU.1 QTLs were

also eQTLs) to a very high (73% of H3K4me3 QTLs were also

eQTLs) degree (Figure 5A). These results demonstrate that only

a small proportion of genetically variable TF-DNA binding events

actually lead to measurable changes in gene expression, in

line with recent TF knockdown studies carried out in LCLs

(Cusanovich et al., 2014). They also suggest that promoter

QTLs show very high specificity for genetic gene perturbations,

consistent with the enrichment of complex trait-associated

variants in cell-type-specific H3K4me3 regions (Trynka et al.,

2013).

We further characterized the width and the depth of the QTL

signal path by estimating the number of distinct molecular marks
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and phenotypes that were affected by the

same cQTL and eQTL. We observed that

the majority of QTLs affect several molec-
ular marks (75%) (Figuress 5B and S6A) and molecular pheno-

types of the same and/or different type (80%) (Figures 5C and

S6B). Instances of QTLs for which we did not identify cross-

talk between distinct molecular marks were of significantly lower

effect sizes (Figure S6C). In contrast, 99% of vcmQTLs were

associated with multiple molecular marks and phenotypes, sug-

gesting that they capture the deepest and widest range of ge-

netic associations across all studied epigenomic components.

Taken together, these results demonstrate that the majority of

cQTLs perturb several chromatin state components at the

same or across distinct cis-regulatory elements.

We next set out to identify which component is more likely

to initiate the genetically induced molecular cascade. To do so,

we estimated the enrichment of each QTL class being located

within particular functional elements. The underlying reasoning

was that QTLs that overlap a functional element should initially

affect that element first before their effect extends toward non-

overlapping elements that belong to the same VCM. We found

a clear enrichment signal in TF-bound regions for all types of

QTLs. For instance, H3K27ac and H3K4me1 QTLs were seven

times more likely to be located within PU.1-bound regions than

expected by chance, and vcmQTLs were nine times more en-

riched within PU.1-bound regions (Figure 5D). We independently

validated this observation by testing for enrichment of QTLs in

open chromatin regions and experimentally defined TF-bound

regions (Figures S6D and S6E). We found that vcmQTLs demon-

strated the strongest enrichment at regions that were bound by

PU.1, BATF, BCL11A, NFKB, MEF2A, and IRF4 (Figure S6E),

consistent with our observations that these TFs are specifically

enriched at variable cis-regulatory elements (Figure 2E). More-

over, cQTLs that fell within TF-bound regions exhibited stronger



Figure 5. Sharing of Genetic Associations between TF-DNA Binding, HMs, and Gene Expression

(A) Estimation of QTLs that are shared between molecular marks. For example, 81% of H3K4me3 QTLs are also associated with H3K27ac marks.

(B and C) Collateral impact of genetic variation on chromatin architecture and gene expression. (B) Percentage of tf-, hm-, and eQTLs being associated with

multiple distinct molecular marks, i.e., DNA binding (PU.1, RPB2), HM levels (H3K4me1, H3K4me3, H3K27ac), and gene expression. For example, 75% of QTLs

affect multiple marks. Triangle, genetic variant; other symbols, molecular marks. (C) Percentage of tf-, hm-, and eQTLs being associated with multiple molecular

phenotypes (i.e., TF-binding, HM levels, and gene expression). For example, 7.5% of all QTLs affect >10 molecular phenotypes. Triangle, genetic variant; other

symbols, molecular phenotypes.

(D) Enrichment of QTLs within active cis-regulatory elements. For example, vcmQTL variants map nine times more likely into PU.1-bound regions than expected

by chance.

(E) Estimation of allelic effect frequency (using p1 statistics) at heterozygous QTL variants. For example, AS effects at H3K27ac sites are 2.2-fold more likely at

PU.1 QTL variants as compared to all variants.

See also Figures S5 and S6.
effect sizes than those falling outside of such regions (Fig-

ure S6F), and we observed stronger enrichment of allelic biases

at tfQTLs as compared to hmQTLs for each studied molecular

mark (Figure 5E).

We next investigated the impact of TF motif disruption and its

downstream effects onto other molecular phenotypes, using

Bayesian network modeling. We assessed all molecular associ-

ations that involve PU.1 and considered cases separately

whereby PU.1 QTL variants disrupted a PU.1 binding site. We

observed that PU.1-DNA binding variation was more likely to

be causal to variation in H3K27ac and H3K4me1 signals in cases

in which the PU.1 motif was disrupted as compared to cases in

which the PU.1 QTL mapped elsewhere in the genome (Fig-

ure S6G). Thus, these results indicate that sequence-specific

TF-DNA interactions are an important driving force behind in-

ter-individual chromatin state variation.
The previous sections demonstrated that genetic perturbation

of a few molecular phenotypes can be causal to changes in

downstream molecular phenotypes, thus providing a potential

explanation as to why most variation in chromatin state is likely

independent of proximal sequence changes. VCMs provide the

conceptual framework to test the hypothesis of a few molecular

phenotypes causing collateral changes to chromatin states

across cis-regulatory elements. We therefore performed associ-

ation analysis of vcmQTL variants with every molecular pheno-

type of the corresponding VCMand observed strong association

signalswith individualmolecular phenotypes (Figures 6Aand6B).

Moreover, we observed that the average QTL strength for

individual molecular phenotypes scales significantly with the

strength of vcmQTLs (r = 0.91, p < 2.2e-16) yet one order of

magnitude weaker (Figure S6H). The latter observation sug-

gests one or more of the following possibilities: (1) higher-order
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Figure 6. Propagation of Genetic Signals through Molecular Phenotypes

(A) Distribution of �log-transformed association p values for vcmQTL variants and VCM-defining molecular phenotypes.

(B and C) Genetic variation exhibits direct and indirect effects on chromatin architecture. (B) Significant association between the SNP rs6537048 and the state of

VCM vcm10018 (chr4:142,224,793–142,570,395) upstream of IL15. See Figure S1I for molecular associations in this region based on all marks. Boxplot shows

the PCA-derived vcm10018 activity level split by genotype of the SNP rs6537048. Molecular phenotypes within vcm10018 are themselves associated with

rs6537048. Molecular association structure is shown together with rs6537048 genotype-averaged TF DNA binding and HM signals. Nodes define individual

marks for specific molecular phenotypes (i.e., TF binding and HM) and gray lines depict significant associations between these molecular phenotypes. (C) VCM

associations are contrasted against the association strength of the same vcmQTL variant with individual molecular phenotypes (i.e., TF-DNA binding and HM).

The molecular association structure within VCMs is used to define three layers of molecular events (entry, first degree, and second degree, see main text).

Boxplots show the ratio of genetic association strength between VCMs and the average of individual molecular phenotypes (i.e., log10 PVCM/PTF/HM).

(D) Inference of causal relationships between VCM state and gene expression using Bayesian causality modeling. The frequency of the most likely model is

shown.

(E) Enrichment of cQTLs and eQTLs in complex disease susceptibility variants by trait class. The gray bars signify 95% CI.

See also Figure S6.
chromatin statesaremore reflective of genetic perturbations than

individual molecular phenotypes; (2) VCMs exhibit a genetically

defined structure with few causal effects driving downstream

molecular cascades; or (3) VCMs constitute more accurate

phenotype estimates, since the correlation structure represented

as a PC is devoid of experimental and environmental noise inde-

pendent of which molecular phenotype is used.

To explore these possibilities, we contrasted the association

strength of the same vcmQTL variant with VCM states and

individual molecular events (Figure 6C). We further used the mo-

lecular association structure that defines VCMs to obtain a hier-
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archy of molecular interactions: (1) entry phenotypes that exhibit

the strongest association with vcmQTLs, (2) direct (first-degree)

molecular phenotypes that are defined as being directly associ-

ated with the entry phenotype, and (3) indirect (second-degree)

molecular interactions that are associated with the entry pheno-

type via intermediate molecular associations. These analyses

revealed that VCM entry phenotypes exhibit a similar associa-

tion strength with vcmQTL variants as VCMs themselves, further

supporting our observation that a single molecular phenotype

can act as a seed for collateral changes within the respective

VCM (Figure 6C, black boxplot). Interestingly, simulations



demonstrated that PU.1 is most likely to act as an entry pheno-

type among our probedmolecular marks (Figure S6I). Consistent

with a hierarchical view, we observed that the remaining molec-

ular phenotypes are, on average, more weakly associated with

vcmQTL variants than the overall VCM state and VCM entry

phenotypes (Figure 6C, blue and orange boxplots). More specif-

ically, first-degree (direct) molecular phenotypes were more

strongly associated with vcmQTL variants than second-degree

(indirect) phenotypes.

We subsequently studied genetic variants that affect chro-

matin modules (vcmQTLs) and gene expression (eQTL) to obtain

a global view of the cis-regulatory information flow. Bayesian

modeling indicates that genetic variants affected gene expres-

sion levels through modulation of chromatin activity in 78% of

the cases (Figure 6D), thus illustrating that genetic perturbation

of chromatin states at cis-regulatory elements is, in most cases,

causal to changes in gene expression.

Finally, we found that all types of cQTLs are enriched in known

complex disease susceptibility variants, especially in immune

system disease variants (Figure 6E), providing direct functional

genetic evidence that non-coding disease susceptibility variants

exert their effects through perturbation of gene regulatory

elements.

DISCUSSION

Our analyses uncovered extensive coordination in chromatin

variation at and between cis-regulatory elements in a human

population, revealing the existence of genomic compartments

in the form of variable chromatin modules (VCMs). VCMs sug-

gest a higher-order modular organization of gene regulation in

the human genome, which is supported by the observation

that VCMs are strongly enriched within chromosomal contact

domains (Rao et al., 2014). Interestingly, immunity-related genes

are specifically associated with VCMs, consistent with the bio-

logical nature of LCLs. This finding implies that the resolution

of topologically associated domains (TADs) that were so far de-

tected (de Laat and Duboule, 2013; Dixon et al., 2012; Rao et al.,

2014) may extend to the level of individual genes (or sets of

co-regulated genes), consistent with the observation of micro-

topologies at the sub-Mb scale around key developmental genes

in mouse embryonic stem cells (Phillips-Cremins et al., 2013).

Our data further suggest that population-level chromatin pro-

filing might be an efficient strategy to assess putative chromatin

interactions at high spatial resolution, complementing other

molecular techniques aimed at mapping chromatin interactions

(Sanyal et al., 2012), transcription-coupled chromatin remod-

eling events (Smolle and Workman, 2013), TF-DNA-binding-

induced spreading of histone marks (Hathaway et al., 2012),

and enhancer/promoter-gene interactions, respectively.

VCMs also provide a rational framework for explaining why

regulatory events can vary independent of proximal sequence

changes in molecular terms (Kasowski et al., 2010, 2013; Kilpi-

nen et al., 2013; McVicker et al., 2013; Reddy et al., 2012; Villar

et al., 2014). Chromatin activity at cis-regulatory elements can be

influenced by distally acting genetic variants of variable effect

size, as we strongly suggest in this study for all analyzed molec-

ular phenotypes. In addition, we found that the activity level of
each VCM can be captured by a single quantitative phenotype,

which suggests that molecular processes within each VCM

(i.e., histone-mark deposition and TF-DNA binding) are subject

to highly penetrant causal events. Our study provides strong

support for the hypothesis that these events correspond in large

part to genetic perturbations of TF-DNA interactions. This is

based on the fact that vcmQTLs: (1) are strongly enriched within

TF-occupied regions, (2) simultaneously perturb several layers of

chromatin structure, and (3) are in the majority of cases causal to

the observed changes in gene expression. From this, a model

emerges in which the perturbation of a single or a few TF-DNA

interactions can act as a seed for coordinated, collateral regula-

tory changes within a respective VCM. We hypothesize that

these changes are in large part mediated by long-range TF-TF

cooperativity events, given our observation that specific pairs

of lineage-determining, signal-dependent, and architectural fac-

tors (Heinz et al., 2010; Ong and Corces, 2014; Zhou et al., 2015)

are significantly enriched at VCM elements.

Interestingly, whereas ‘‘promoter VCMs’’ correlated frequently

with gene expression, we found that only a few ‘‘enhancer

VCMs’’ were linked to nearby genes, and only one-quarter of

PU.1 or H3K4me1 QTLs were shared with eQTLs. This finding

may imply either: (1) that abundant enhancer variation is of

such small effect on target gene expression as to be undetect-

able given the sample size of this study or (2) that the affected

enhancers are primed to conditionally regulate gene expression

(for example, in response to specific stimuli) (Calo andWysocka,

2013; Shlyueva et al., 2014; Spitz and Furlong, 2012). Alterna-

tively, these sequences may be subject to spurious regulatory

activity, which would explain the findings that: (1) only a minority

of genetically variable TF-DNAbinding events result in differential

gene expression (this work), (2) a large portion of TF-DNAbinding

events have no functional consequence (Cusanovich et al., 2014;

Farnham, 2009), and (3) TF binding sites tend to experience

rapid turnover (Dermitzakis and Clark, 2002; Villar et al., 2015).

Another complementary interpretation involves the model of

dose-dependent gene activation in which several TF binding

sites in multiple elements cumulatively contribute to gene ex-

pression (Spivakov, 2014). Under this model, loss of TF-DNA

binding at one binding site would have little to no discernible

functional consequence as long as the other implicated TF bind-

ing sites remain intact. This would, in turn, be consistent with

our observation that VCMs involving multiple cis-regulatory ele-

ments were farmore likely to correlate with gene expression vari-

ation than VCMs involving only one element.

Our present work on the discovery of molecular associations

and cQTLs for key chromatin organization components in a hu-

man population sample provides unique insights and a novel

framework for studying the molecular mechanisms underlying

variable transcriptional programs between individuals.

EXPERIMENTAL PROCEDURES

Study Samples

ChIP-seq and RNA-seq data were produced from lymphoblastoid cell lines

(LCLs) of 54 samples (Abecasis et al., 2010). All individuals were of European

origin (Utah residents with ancestry from northern and western Europe

and abbreviated as CEU). After excluding samples due to suspected

swaps, contamination (see Supplemental Experimental Procedures, 3.4), or
Cell 162, 1039–1050, August 27, 2015 ª2015 Elsevier Inc. 1047



incomplete data availability (sample failed for a subset of assays), our final data

set consisted of 47 individuals for all ChIP assays and 46 individuals for gene

expression measurements (Table S1 for basic sample information).

ChIP-Seq and mRNA-Seq Experiments

All sequencing assays (ChIP and mRNA) were produced from a single growth

of LCLs, and cell culture and cell fixation were performed as previously

described (Kilpinen et al., 2013). ChIPs for H3K27ac, H3K4me1, H3k4me3,

PU.1, and RNA polymerase II (RPB2) were performed as described in the

Supplemental Experimental Procedures, 1.1–1.3. RNA extraction was done

following the procedure described in the Supplemental Experimental Proce-

dures, 2.1. Library preparation and sequencing done for ChIP and mRNA

are described in detail in Supplemental Experimental Procedures, 1.4 and

2.2, respectively. Short-read alignment for ChIP-seq and RNA-seq was per-

formed using BWA 0.5.9 (Li and Durbin, 2009) against the hg19 build of the

human reference genome supplemented with the Epstein-Barr virus (EBV)

sequence. All sequencing data management was done using Samtools (Li

et al., 2009) (Supplemental Experimental Procedures, 1.5 and 2.3). A summary

of mapping statistics is provided in Table S1B.

From ChIP-Seq Experiments to Molecular Phenotypes

ChIP-seq peak calling was not directly performed in the current set of samples

to avoid the issue of fuzzy peak boundaries. Instead, we used an indepen-

dently derived peak set for each assay that is based on six 1000 Genomes

Project Pilot individuals (Kilpinen et al., 2013). Quantifications for all peak-sam-

ple pairs were obtained by counting overlapping reads using HOMER (Heinz

et al., 2010), which resulted in a quantification matrix of size #samples 3

#peaks per assay (Supplemental Experimental Procedures, 1.6). Peak quanti-

fications were scaled to adjust for differences in total library size and were

corrected for batch effects using PEER (Stegle et al., 2010). We empirically

determined the optimal number of K PEER factors to be removed by finding

the K leading to the highest number of discovered QTLs (Supplemental Exper-

imental Procedures, 1.7).

From mRNA-Seq Experiments to Molecular Phenotypes

mRNA-seq data were quantified per sample based on GENCODE v15 (08/

2012) gene annotations (Harrow et al., 2012), resulting in a quantification

matrix of size #samples 3 #genes. All genes with five samples (>10%) or

more without any overlapping reads were removed, and the remaining quan-

tifications were scaled (10 M reads) and corrected for batch effects (PEER

K = 15) (Supplemental Experimental Procedures, 2.4 and 2.5).

Genotype Information

Genotypes for the 47 samples were obtained from two sources: (1) 34 with

genome-wide sequence data from 1000 Genomes Phase 1 v.3 and (2) 13

other CEU samples with Illumina Omni2.5 genotype data. Both were merged

by imputing untyped sequence variants into Illumina Omni2.5 data using

IMPUTE2 (Howie et al., 2009). Subsequently, all variants with minor allele fre-

quency below 5% were removed. See Lappalainen et al. (2013) for additional

details on genotype processing.

Analytical Methods for Molecular Phenotype-Phenotype

Associations

Mapping Molecular Associations

To map associations between pairs of peaks, we proceeded as follows for

each of the 15 possible unordered pairs of distinct molecular phenotypes:

we measured the inter-individual Pearson correlation and its significance

(p value) between quantifications of every possible pair of peaks within 1 Mb

distance of each other. Then, we corrected for multiple testing by controlling

for a 0.1% false discovery rate using the R/qvalue package (Alan Dabney,

John D. Storey and with assistance from Gregory R. Warnes. qvalue: Q-value

estimation for false discovery rate control. R package version 1.36.0.). Per-

centages (i.e., p1 estimates) of truly associated pairs were also estimated as

a byproduct (Supplemental Experimental Procedures, 3.1).

Building VCMs

We used graph theory to build VCMs and assumed that peaks are nodes and

significant peak associations edges. Any two peaks belong to the same VCM
1048 Cell 162, 1039–1050, August 27, 2015 ª2015 Elsevier Inc.
as soon as there is a path (i.e., a sequence of edges) that links them together;

otherwise, they belong to two distinct VCMs. Based on this, we implemented

an iterative algorithm that assigns peaks to VCMs. Then, VCM state activity

levels were obtained using principal component analysis (PCA) on quantifica-

tions of all peaks that belong to a VCM (Supplemental Experimental Proce-

dures, 3.2).

Functional Annotation of VCMs

We used the online service GREAT v2.0.2 to predict over-represented path-

ways and biological processes for VCM domains. Functional annotation

of VCM-associated genes was performed using the online serviceConsensus-

PathDB-human using the over-representation analysis module and gene

ontology categories (BP level 2) (Supplemental Experimental Procedures, 3.9).

Enrichment in Contact Domains

We used high-resolution chromosomal contact domains for LCLs from Rao

et al. (2014) to estimate how more likely associated peak pairs occur within

the same contact domain as compared to non-associated ones. To do so,

we used logistic regression with within/between contact domains as the binary

response, the association status (significant or not) as explanatory variable,

and the peak-to-peak distance as a covariate (Supplemental Experimental

Procedures, 3.11).

TFs Co-Occurrence at VCM Elements

We used the Fisher’s exact test to estimate enrichments of ENCODE TF-TF

pairs at non-overlapping VCM elements (Supplemental Experimental Proce-

dures, 3.13).

Analytical Methods for Quantitative Trait Loci

Mapping QTLs

We mapped cis-acting quantitative trait loci (QTLs) by performing linear re-

gressions between peak or gene quantifications and genotypes at all variant

sites within 250 kb (cis-window around the gene TSS or the peak center).

Then, we stored the best association for each peak/gene as a putative QTL

and corrected: (1) for multiple variants and (2) multiple peaks/genes being

tested genome-wide. We used permutations and false discovery rate to cor-

rect for (1) and (2), respectively. In addition, we repeated this analysis multiple

timeswith various cis-window sizes in order to determine the size providing the

best trade-off between discovery power and distal effect capture (Figures

S4A–S4C and Supplemental Experimental Procedures, 3.3). This analysis

has been performed using the software package FastQTL (http://fastqtl.

sourceforge.net/).

Estimating Proportion of Shared QTLs

To see if a QTL for assay A1 is replicated in assay A2, we first found a A2 peak

that matches the A1 peak by minimizing the distance between both, and then

we looked at the nominal p value of association between the QTL and the

matched A2 peak. By repeating this for all A1 QTLs, we can then estimate

the proportion that is shared with A2 using the p1 statistic (Supplemental

Experimental Procedures, 3.5).

Detecting Multiple Effects of QTLs

To map out the peaks affected by a QTL, we measured association between

the QTL and all features across all assays located within 250 kb and then

divided the resulting p values by the number of tested features (Bonferroni

correction) and finally reported as hits associations with a p value below the

0.05 threshold (Supplemental Experimental Procedures, 3.6).

Enrichment of QTLs within Functional Annotations

To measure how much more likely than by chance a set of QTLs is located

within a particular annotation, we developed an approach that corrects for

the fact that QTLs and annotations are not uniformly distributed along the

genome, with the goal of getting more robust enrichment estimates. This

method basically aims to find a null set of QTLs with some properties (e.g., dis-

tance to associated peak/gene) that match the original set (Supplemental

Experimental Procedures, 3.7).

Enrichment of QTLs with GWAS Hits

To measure how the QTL sets are enriched for GWAS hits, we used the NHGRI

GWAS Catalog (December 8, 2014), generated 1,000 null sets of QTLs with

matching properties (distance to associated peak/gene and minor allele fre-

quency), and tested how often these null QTL sets overlap GWAS hits as

compared to the original QTL set. Note that two variants are assumed to overlap

as soon as they are in high LD (Supplemental Experimental Procedures, 3.10).

http://fastqtl.sourceforge.net/
http://fastqtl.sourceforge.net/


QTL Causality Modeling

When a QTL is associated with two peaks (or genes), we inferred the most

likely signal transmission path (i.e., the causal chain of events) through the

two affected molecular phenotypes using Bayesian network modeling: we

enumerate the three possible models (QTL = > A1 = > A2, QTL = > A2 = >

A1 and QTL = > A1/QTL = > A2), estimate their respective likelihood, and

assign the most likely model to each triplet (Supplemental Experimental Pro-

cedures, 3.8).

Analytical Methods for Allele-Specific Effects

Mapping ASE

This was only performed on samples with sequence data (n = 34/47, Experi-

mental Procedures, ‘‘Genotype Information’’) at heterozygous SNPs. Devia-

tion from equilibrium (i.e., 50%–50%) was characterized using binomial tests,

accounting for multiple major sources of technical bias, such as reference

allele mapping bias, clonal reads, and non-unique mappability of reads, as

described previously (Kilpinen et al., 2013; Lappalainen et al., 2013; Waszak

et al., 2014) (Supplemental Experimental Procedures, 3.4). Allele-specific

effects (ASE) analysis was also used as a quality control step to identify puta-

tive sample swaps or contaminations.

Haplotypic ASE Coordination

We looked at ASEmeasured at phased heterozygous SNPs falling within VCM

peaks and assessed whether the signal was consistent with the haplotype

phase. In practice, we use logistic regression with concordance in allelic direc-

tion as response variable, association status (VCM/null) as explanatory vari-

able, and distance between peaks as covariates (Supplemental Experimental

Procedures, 3.12).
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