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ABSTRACT

Motivation: High-throughput sequencing technologies enable the

genome-wide analysis of the impact of genetic variation on molecular

phenotypes at unprecedented resolution. However, although power-

ful, these technologies can also introduce unexpected artifacts.

Results: We investigated the impact of library amplification bias on

the identification of allele-specific (AS) molecular events from high-

throughput sequencing data derived from chromatin immunoprecipi-

tation assays (ChIP-seq). Putative AS DNA binding activity for RNA

polymerase II was determined using ChIP-seq data derived from lym-

phoblastoid cell lines of two parent–daughter trios. We found that, at

high-sequencing depth, many significant AS binding sites suffered

from an amplification bias, as evidenced by a larger number of

clonal reads representing one of the two alleles. To alleviate this

bias, we devised an amplification bias detection strategy, which filters

out sites with low read complexity and sites featuring a significant

excess of clonal reads. This method will be useful for AS analyses

involving ChIP-seq and other functional sequencing assays.

Availability: The R package absfilter for library clonality simulations

and detection of amplification-biased sites is available from http://

updepla1srv1.epfl.ch/waszaks/absfilter

Contact: sebastian.waszak@epfl.ch or bart.deplancke@epfl.ch

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The advent of high-throughput sequencing technologies has

enabled us to study the relationship between genomic variants

and various molecular phenotypes at single basepair resolution.

To elucidate the molecular mechanisms underlying allele-specific

(AS) gene regulation, such as those affected by cis-regulatory

variants (Montgomery et al., 2010; Pickrell et al., 2010), several

studies have started to probe allele- or individual-specific changes

in transcription factor (TF) binding and chromatin states

(Degner et al., 2012; Kasowski et al., 2010; Kilpinen et al.,

2013; McDaniell et al., 2010; Reddy et al., 2012), revealing that

such changes are abundant and often correlate with gene expres-

sion differences.
To detect these changes, specialized computational workflows

have been developed to eliminate several possible sources of bias

inherently linked to the analysis of AS behavior. Although the

analysis may seem straightforward, several technical hurdles

need to be overcome to ensure reliable results. These include,

for example, the reference allele mapping bias, i.e. the tendency

of reads to map more frequently/better to the reference allele

than the alternative allele (Degner et al., 2009; McDaniell

et al., 2010; Rozowsky et al., 2011), biases linked to duplicated

genomic regions (Pickrell et al., 2010; Rozowsky et al., 2011),

quality of genotype calls (Rozowsky et al., 2011), or the statis-

tical tests used (Montgomery and Dermitzakis, 2011; Rozowsky

et al., 2011).
Here, using RNA polymerase II chromatin immunoprecipita-

tion assay (ChIP) sequencing data from two parent–daughter

trios from the 1000 genomes project, we studied another signifi-

cant source of bias, namely, library amplification, which can

introduce a large number of false-positive AS DNA binding

(ASB) events. To address this bias, we developed a two-tiered

amplification bias detection strategy that filters out many of

these likely false-positive sites and greatly improves the overall

reliability of the data. This pipeline should prove useful for many

studies aiming to use ChIP-sequencing (ChIP-seq) technology to

identify AS molecular changes (e.g. in protein–DNA binding

or chromatin structure).

2 METHODS

2.1 RNA polymerase II ChIP-seq dataset

RNA polymerase II ChIP-seq data for two parent–daughter trios was

obtained from Kilpinen et al. (2013). Briefly, we used 5� 107 cross-linked

lymphoblastoid cells for chromatin immunoprecipitation experiments*To whom correspondence should be addressed.
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with an anti-RPB2 antibody (sc-67318, Santa Cruz Biotechnology).

ChIP-seq library preparation was performed using the Illumina ChIP-

seq DNA Sample Prep Kit with 10.5ng of purified ChIP-DNA. ChIP-

DNA libraries were amplified using 18 polymerase chain reaction (PCR)

cycles, according to manufacturers instructions, and sequencing was per-

formed on an Illumina HiSeq 2000 machine (36-bp read length, single

end) with one sample per lane. ChIP-seq reads were aligned against the

standard hg19 build of the human reference genome with BWA 0.5.9 [Li

and Durbin (2009); default settings]. For sequencing depth simulations,

we randomly sampled 25–200 million mapped reads in 25 million steps

using samtools (view -s; seed¼ 0). Reads with mapping quality510 were

discarded for AS binding analysis.

2.2 Read clonality simulations

We simulated 36-bp reads around heterozygous single nucleotide poly-

morphism (SNP) sites to obtain a better sense about clonal signals. In

total, 200 datasets with 1000 artificial sites each were created, whereby

1–2000 reads were simulated per site. Each simulated dataset contained

between 0 and 99.5% clonal reads in 0.05% steps (thus resulting in 200

simulation sets). We define a clonal read as being the product of the PCR

library amplification step during sequencing library preparation. For ex-

ample, a simulation with 100 reads/SNP site and a defined clonal popu-

lation of 10% indicates that the site is covered by 90 independent reads

and 10 clonal reads produced during the PCR amplification step. To

obtain an empirical distribution of read alignment start sites around

SNPs, we randomly placed all independent reads (out of all simulated

reads) on the plus or minus strand around a SNP site. The maximum

number of unique alignment read start sites for 36-bp reads is 72 (i.e.

2� 36bp). We naively assumed that each alignment position around a

SNP site has an equal probability of being covered, i.e. we did not con-

sider mappability biases, short-read alignment artifacts, or positional ef-

fects. Within each simulated dataset and for each SNP read depth value,

we counted the number of unique read alignment start sites (URSS).

2.3 Estimation of ChIP-seq library clonality based on

clonality simulations

For each simulated dataset and SNP read depth bin, we calculated the

mean number of URSSs for all 1000 simulated SNP sites. To estimate the

clonality (i.e. proportion of clonal reads at SNP sites) of an actual ChIP-

seq library, we first obtained the distribution of URSSs for all tested

heterozygous SNP sites [i.e. heterozygous SNPs covered by at least 20

reads and filtered for other artifacts; see Kilpinen et al. (2013)]. From the

observed URSS distribution, we calculated for each SNP read depth bin

the mean number of URSSs. SNP read depth bins with55 SNPs were

discarded from further analysis. We then selected the best clonality simu-

lation model by comparing all simulated mean URSS distributions

against the observed average URSS distribution using the

Kolmogorov–Smirnov (KS) test implemented in the R statistical software

(stats package, ks.test function; http://www.r-project.org). The simulation

model with the lowest D statistic was selected as the best clonality model.

2.4 Alternative estimation of ChIP-seq library clonality

Within each ChIP-seq library we counted the genome-wide number of

URSSs (NURSS) and the total number of mapped reads (Nreads). The

overall clonality of a ChIP-seq library was approximated with

1�NURSS/Nreads.

2.5 Global amplification bias SNP filter

The global filter is sequencing-depth independent and flags any site that is

covered by reads with less than N URSS, whereby N ranges between 1 to

(2� read length). It is a priori unknown which cutoff yields the best trade-

off between removing putative amplification-biased sites and retaining

real sites. Our clonality simulation results show that for highly clonal

libraries (495% clonality), the number of URSSs is on average below

five at sites covered by up to 100 reads. Therefore, we required that at

least five URSSs should be covered by reads irrespective of read depth

and library clonality.

2.6 Local amplification bias SNP filter

Based on the best clonality simulation model (see Section 2.3), we have

tested for each accessible SNP (minimum 20 reads/site) whether the

number of observed URSSs over both alleles deviates significantly from

our expectations of having at least a certain number of URSSs. Using the

clonality simulations, we drew for each site the expected distribution of

URSSs and flagged SNPs as amplification-biased if the observed URSS

value was equal or lower than the 50th element (out of 1000) of the sorted

simulated URSS distribution (thus corresponding to an one-tailed P-

value cutoff of 0.05). In addition, we performed power calculations by

testing whether the proposed local (joint-allele) filter is able to identify

instances where only one allele experiences an amplification bias and the

second allele behaves as expected. We ran simulations for scenarios where

a significant allelic imbalance (allele1/allele2) is41.5-fold (and42-fold) at

sites covered by 20–400 reads (P50.01). These parameters represent the

observed range of read depth at SNP sites (i.e. 90% of accessible sites

were covered by5400 reads) as well as allelic imbalances (i.e. 90% of all

significant sites had an allelic imbalance of41.5-fold). The simulations

were performed for libraries with low (10%), intermediate (50%) and

high fractions of clonal reads (90%). We only considered the worst-

case scenarios in which the alternative allele behaves without any bias

and that reads mapping to the reference allele cover URSSs that are not

shared with URSSs from the alternative allele, thus decreasing the like-

lihood that the joint-allele filter can detect a biased site. The latter as-

sumption is often negated at sites that are covered by many unique reads

(i.e. #URSS-ref-alleleþ#URSS-alt-allele472). For each simulated site,

we calculated the number of required URSSs at which the joint-allele

filter flags a site as amplification biased. The resulting fold difference in

the number of URSSs required to flag a site (i.e. #URSS-allele-specific-

filter/#URSS-joint-allele-filter) indicates to what extent an AS bias needs

to be more pronounced to be detectable with the joint-allele filter.

2.7 Genomic distribution of AS binding sites

We used the GENCODE transcript annotation version 8 (Harrow et al.,

2012) to identify SNPs located within promoters of protein-coding tran-

scripts. We defined the promoter region of transcripts as �1kb around

transcription start sites.

3 RESULTS

In the context of a large-scale project aiming to study allelic

variability of gene regulatory processes (Kilpinen et al., 2013),

we generated genome-wide RNA polymerase II DNA binding

profiles from two parent–daughter trios sequenced as part of the

1000 genomes project (pilot 2) using ChIP-seq and targeting the

second largest RNA polymerase II subunit RPB2 (POLR2B).

We obtained on average 227 million reads/individual (36 bp,

single end; Section 2.1), of which 73% were usable for AS ana-

lysis. To identify ASB activity within individuals, i.e. preferential

binding of POLR2B to the maternal or paternal allele, we

focused on 57 241 regions (peaks) that showed significant

POLR2B enrichment (Kilpinen et al., 2013).

We tested for ASB at heterozygous SNP sites (1000 Genomes

Project Consortium, 2010) that were located within POLR2B

peaks. Only SNPs covered by at least 20 reads/individual were
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considered. This initial set of putative ASB sites was further fil-

tered for sites susceptible to various sources of artifacts, such as

incorrect or poor mapping of reads containing SNPs (Kilpinen

et al., 2013; Montgomery et al., 2010). For each SNP site, we

counted the number of overlapping reads carrying either the ref-

erence or alternative allele and applied a modified binomial test

that corrects for the reference allele mapping bias (Kilpinen et al.,

2013; Montgomery et al., 2010) on the read count data to iden-

tify sites with a significant deviation from the null hypothesis of

equal DNA binding. Among 2082–4446 accessible SNPs/individ-

ual, we identified 34–53% significant ASB events (P50.01).

These results suggest that variability in POLR2B binding is ex-

tensive and consistent with earlier observations (Kasowski et al.,

2010; Reddy et al., 2012).

However, after plotting the reference allele ratio, i.e. the frac-

tion of reads carrying the reference as opposed to the alternative

allele at SNP sites, we observed a surprising and substantial bias

toward monoallelic (MA) or near-MA DNA binding with vary-

ing levels across individuals (Fig. 1, Supplementary Fig. S1), a

finding that to our knowledge has not been reported in ASB

studies so far. More specifically, 8–35% of the statistically sig-

nificant ASB sites demonstrated MA DNA binding, and the

fraction of MA ASB sites increased using more stringent

P-value cutoffs (e.g. 12–42% at P¼ 0.001; 17–49% at

P¼ 0.0001) (Fig. 2A). The varying levels of MA sites across

the six individuals might either point to an important, yet

poorly characterized biological effect (Gimelbrant et al., 2007),

or might simply reflect a technical artifact, as we sequenced each

library on a single lane of Illumina HiSeq2000 machine, resulting

in high sequencing depth.

Because many known biases were already accounted for in

Kilpinen et al. (2013), we looked for alternative causes that

might lead to highly significant MA DNA binding activity.

First, we noticed that only 10% of all significant MA sites

were located on the X chromosome in females and MA binding

occurred in males as well, thus refuting a simple hypothesis that

the majority of MA sites are due to X chromosome inactivation

mechanisms (McDaniell et al., 2010). We observed that total

read depth at autosomal significant MA ASB sites (P50.01)
was 3-fold lower than at biallelic sites, suggesting that sequencing
depth may affect the detection of MA binding events

(Supplementary Fig. S2). To explore this topic further, we ran-
domly sampled 25–200 million mapped reads (in incremental 25
million steps) from two POLR2B libraries that showed the stron-
gest MA bias and observed that the proportion of MA sites

among all tested sites increased with sequencing depth
(Supplementary Fig. S3). For example, the proportion of MA
sites was up to 10-fold lower in a low (25 million) compared with

a high (200 million) sequencing depth library. These results illus-
trate that the observed MA bias is at least in part related to
sequencing depth. However, we noted that the proportion of

MA sites was sample-specific because 2–20% of significant
MA sites exhibited high depth (450 reads), which means that
this bias cannot be avoided by simply increasing the read

depth threshold at which sites are considered for ASB analysis.
Therefore, we further inspected the local read alignment dis-

tribution around putative ASB sites, which revealed that many

sites are covered by an unexpectedly high number of clonal
reads, i.e. reads mapping to the same strand and having an iden-
tical alignment start position (Fig. 2B). This might substantially

bias the read count toward one allele. More specifically, 10–84%
and 4–20% of all significant MA and biallelic sites were covered

A

B

Fig. 2. Monoallelic POLR2B sites. (A) Proportion of MA sites among

significant ASB sites using different ASB test P-value thresholds. Dots

show data from all six individuals. Horizontal lines indicate the median.

(B) Histogram of URSSs for significant ASB sites (P50.01)

Fig. 1. POLR2B reference allele ratio distribution. Distribution of the

reference allele ratio across all tested heterozygous SNP sites. Numbers

above each panel refer to the identifier of the individual
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by only three or fewer unique reads, respectively. Grouping all
testable sites by their number of URSSs and calculating for each
URSS bin the proportion of significant ASB events further illu-

strated this trend (Supplementary Fig. S4). Sites with few URSSs
correspond to highly biased ASB sites, as 94, 60, 50 and 48% of
those with only 1, 2, 3 or 4 URSSs were predicted as significant,

respectively.
To better understand and to account for this bias, we assessed

the clonality of each of the six ChIP-seq libraries, which is a

direct measure of the library complexity. For this purpose, we
calculated how many URSSs could be expected within a region
spanning twice the read length centered on an SNP site, given a

certain assumed percentage of clonal (duplicate) reads at each
site, and a specific SNP read depth (Fig. 3A). Specifically, we
simulated sets of SNP sites with a broad range of read depth

values (1–2000 reads) and various degrees of clonal signals
(0–99.5% per site), thus creating an empirical distribution of
URSSs (Section 2.2). Figure 3B shows the distribution of mean

URSSs profiles across all 1000 simulated sites for different read
depth values and clonality simulation models. For example, at an
SNP site covered by exactly 20 reads, we would expect 17 URSSs

when all reads are independent, but only two URSSs when 90%
of the read population is clonal. These results indicate that low
library complexity might lead to the presence of many sites with

high depth, albeit with little positional variability around the
SNP site, and as such constituting a likely source of strong
bias in ASB analysis.

To further explore this phenomenon across real ChIP-seq
libraries, we plotted for each individual the actual total read
depth and number of URSSs per heterozygous SNP site. To

our surprise, we observed considerable variation across libraries
in the number of URSS per SNP (Fig. 3C), despite being
sequenced to approximately similar depth. For example, SNPs

accessible for ASB analysis and covered by exactly 50 reads are
on average composed of 4–13 non-clonal reads/individual. This
variability in independent ChIP-DNA fragments at putative

ASB sites leads most likely to different levels of support for
the actual ASB event, as many significant ASB sites are covered
by few non-clonal reads or exhibit an unexpectedly low number

of non-clonal reads even at high read depth levels. Importantly,
this bias cannot be addressed by simply choosing a higher min-
imum read depth cutoff per site, as the degree of clonality varies

widely from library to library (Supplementary Fig. S5; discussed
in more detail later in the text). Therefore, this bias may have
strong influence on any downstream ASB analysis, as the overall

confidence in those ASB sites is rather low.
One potential and simple strategy to deal with this problem is

to remove all clonal reads. However, such a strategy would lead

to a situation where, for 36-bp reads, the maximal read depth per
site would be 72 and the corresponding smallest statistically
detectable allelic imbalance would be 1.96-fold at P50.01 (bino-

mial test). As such, removing all duplicate reads would result in
70 (median) significant ASB sites per individual (P50.01), which
would decrease the total number of ASB sites by490% com-

pared with the original and filtered set of sites. Thus, removing
clonal reads substantially reduces the statistical power to detect
moderate effect ASB events.

We next studied the degree of clonality of the actual libraries
and determined a best fit between our simulated URSS and the

A

B

C

Fig. 3. Unique read start alignment start site simulation. (A) Schematic

of the effect of low (0%) and high (90%) library clonality on the distri-

bution of URSSs around a heterozygous (HET) SNP covered by 20

reads. The site represents a case of strong allelic bias whereby 19 reads

support the reference allele (depicted in red) and one read the alternative

allele (depicted in blue). Arrowheads indicate the strand. (B) Simulation

of 1000 SNP sites/read depth value (x-axis) and sampling of a theoretical

distribution of URSSs for each value from 1 to 2000 reads (in single read

steps) given a defined percentage of clonal reads. Lines show the mean

number of URSSs for each read depth value and for different clonality

simulation models. (C) POLR2B URSS profiles. Total read depth

(x-axis) at heterozygous SNP sites (dots) is plotted against the observed

number of URSSs (y-axis). Red dots show significant ASB sites (P50.01)
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real URSS distributions for each individual (Fig. 4A). We used

the KS test for equality of the simulated versus the observed

mean URSS distributions. The simulated distribution that

yields the lowest KS statistic indicates the clonality of the

actual ChIP-seq library (Section 2.3). Using this workflow, we

determined that the genome-wide clonality of the six ChIP-seq

libraries ranged between 73 and 91% (Supplementary Fig. S5).

Thus, these libraries feature a high number of clonal reads due to

deep sequencing, further emphasizing the need to account for

this substantial bias. To validate our simulations, we determined

an independent measure of the extent of clonality (Section 2.4).

The Spearmans rank correlation coefficient between both esti-

mates of library complexity revealed a high consistency

(�¼ 0.989, P¼ 1.9e-4). We then identified ASB sites that feature

a significantly greater number of mapped clonal reads than ex-

pected based on the determined library-specific clonality model.

Biased sites, as indicated earlier in the text, have a high tendency

to survive the significance test for AS binding.
We devised a two-tiered, global and local filtering strategy to

account for the amplification bias. The global filter is sequencing

depth independent and flags any site that is covered by reads

with less than a specified number of URSS (Section 2.5). For
the POLR2B datasets, requiring at least five URSSs per SNP site
removed the majority of highly biased ASB events, i.e. on aver-

age 1–43% of all accessible ASB sites and 2–92% of all MA sites
per individual. The local filter is sequencing depth dependent and
flags sites that show an unexpected low number of URSSs.

Given the library-specific clonality simulations, we can model
the expected URSS distribution for each read depth bin (1–
2000) and test whether the observed number of URSSs per

SNP site is within the expected range of URSSs. This approach
flags sites as amplification-biased that are within the left tail of
the empirical URSS distribution (i.e. having significantly fewer

URSSs than expected). Because the local filter models URSSs
over both alleles jointly, we have performed additional simula-
tions to test if the joint-allele filter is able to identify sites when

only a single allele experiences an amplification bias (Section
2.6). Dependent on the read depth per site and library clonality,
we observed that the joint-allele strategy detects a pure AS bias if
the amplification bias is only borderline above the threshold of

an AS filter (Supplementary Fig. S6). After applying the local
filter on the POLR2B libraries, we identified that an additional
7–22% of all tested sites exhibit an excess of clonal reads and

thus likely constitute biased sites. Together, both filters (local
and global) flagged 19–51% of all initially tested SNPs per
individual as showing low-complexity read alignment start site

patterns around SNP sites (Fig. 4A), thus revealing that low-
complexity biases are common in the tested libraries. After
removing these sites, we observed that the reference allele ratio

distribution exhibited only few sites with MA binding behavior
per individual (2.4–3.9%; Fig. 4B). The filtered set of SNPs
showed at 38, 27 and 20% allelic effects (median across individ-

uals) at P-value cutoffs of 0.01, 0.001 and 0.0001, respectively
(binomial test). In contrast to the original set of sites, MA sites
accounted for only 5–10% of all significant ASB events at

P50.01. Importantly, not all MA sites should be considered as
false positives. MA gene expression is a known biological process
and can be caused, for example, by parent-of-origin silencing of

autosomal genes (imprinting), random gene silencing, or X-in-
activation in females (Gimelbrant et al., 2007; Li et al., 2012),
although it is clear that such events should only constitute a

small portion of all ASB events and not the majority as observed
before filtering. In this regard, it is worth noting that in com-
parison with significant post-filtered ASB sites, pre-filtered MA

sites are depleted from promoters (54 and 16%). This suggests
that biased MA binding events for POLR2B might reflect sto-
chastic transcription events that tend to be covered by few DNA

fragments and become visible as MA at high sequencing depth.
Finally, we set out to provide validation for our proposed

filtering approach. First, we tested if allelic directions are con-

sistent at shared significant ASB sites between two unrelated
individuals (McDaniell et al., 2010) and whether the consistency
improves after removing biased sites (Fig. 5A). The analysis

shows that, although the consistency in allelic direction is
highly significant for all tested sites (�¼ 0.28, P¼ 1.2e-11;
Spearman correlation test), it substantially improves after remov-

ing biased sites (�¼ 0.46, P¼ 9.6e-16), consistent with it being
lower for biased sites alone (�¼ 0.14, P¼ 0.02). Second, we
tested whether two independent, phased and significant SNP

sites located within the same 200bp POLR2B peak show

A

B

Fig. 4. Low-complexity site filtering. (A) Theoretical URSS profiles (blue

line) fitted into POLR2B URSS data. The red line shows the mean URSS

profile for each read depth value. SNPs that did not pass the low-

complexity filtering approach are color coded: orange, global filter;

green, local filter. Horizontal dashed line indicates the global filtering

cutoff. (B) POLR2B reference allele ratio distribution after filtering for

low-complexity SNP sites
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consistent behavior in allelic direction. To avoid artificial correl-
ations, we only considered SNP pairs separated by 37–200bp.
We observed that the allelic direction of sites located within the

same peak is strongly correlated (�¼ 0.58, P¼ 2.2e-16). In agree-
ment with results from the previous analysis, we found that this
correlation is greater for unbiased SNP pairs than for pairs in

which one or both sites are biased (�¼ 0.71 and �¼ 0.42,
P¼ 2.2e-16 and 1.4e-6, respectively) (Fig. 5B). Both analyses re-
mained valid even after excluding sites that reached significance

without duplicate reads (data not shown). Therefore, these
results support the validity of ASB analysis using clonal reads
as well as the effectiveness in identifying biased sites with our

filtering approach.

4 DISCUSSION

It is now well recognized that high-throughput sequencing assays
are susceptible to significant, often non-intuitive artifacts when

used to detect AS molecular events (Degner et al., 2009; Pickrell
et al., 2011; Rozowsky et al., 2011). Here we report another such
artifact intrinsic to deeply sequenced ChIP-seq libraries and

likely other sequencing assays subject to PCR amplification of
a small amount of starting material. Specifically, we demonstrate
that on identifying putative sites with AS POLR2B occupancy,

we retain a clear excess number of sites that exhibit monoallelic
DNA binding behavior. We show that many of these sites suffer
from PCR amplification biases, likely introduced during stand-

ard Illumina library preparation. In a systematic study of base-
composition biases in Illumina sequencing libraries, PCR during

library preparation was identified as the principal bias source
(Aird et al., 2011). Although experimental strategies have been
proposed to reduce this bias, it is widely accepted that it will be

difficult to completely eliminate it, unless PCR amplification is
avoided altogether. However, PCR-free libraries require a sub-
stantial amount of input material, rendering this rather unfeas-

ible for approaches such as ChIP-seq where the sample material
is often limiting (Deplancke, 2009). Consequently, PCR amplifi-
cation bias should be accounted for when using ChIP-seq to

detect AS molecular events involving transcription factors, co-
factors, and histone modifications. As observed in Kilpinen et al.
(2013), all ChIP-seq libraries suffered from this bias, although

the extent differed substantially between factors and libraries
with 8–26% (first and third quartile) of all accessible heterozy-

gous SNP sites exhibiting low read alignment complexity across
nine additional assays profiled in the same individuals as
POLR2B. The later analysis included a previously published

dataset on CCCTC-binding factor (CTCF) binding (McDaniell
et al., 2010) in which 11% of all accessible sites for AS analysis
were flagged as biased. Here we show that one of the sources of

this bias is sequencing depth given that the proportion of MA
binding events increases with increasing sequencing depth. One
simple strategy to deal with this issue is to simply remove all

clonal reads from the dataset (Chen et al., 2012; Heap et al.,
2010). However, previous and our own studies demonstrate
that many clonal reads likely constitute true signals (Chen

et al., 2012). Removing all duplicate reads from the POLR2B
libraries leads to a strong reduction in the overall number of
significant ASB sites as well as to a depletion in sites with mod-

erate ASB signals. Irrespective of the strategy, removing all

A

B

Fig. 5. Consistency of allelic direction before and after filtering for

amplification-biased sites. (A) Reference allele ratios at shared

ASB sites between pairs of unrelated individuals. Sites were accessible

and significant in both individuals. Data from all paired individuals

were pooled. Blue and red dots correspond to unbiased and biased

sites, respectively. Colored lines show linear regression fits using all

testable sites before filtering (black), unbiased sites (blue) and sites

biased in one or both individuals (red), respectively. (B) Paternal

allele ratios of significant ASB site pairs that are located within

POLR2B peaks. Data from all individuals were pooled. Blue and read

dots correspond to unbiased and biased site pairs, respectively. Colored

lines show linear regression fits using all testable site pairs (black),

unbiased site pairs (blue) and site pairs with bias in one or both sites(s)

(red), respectively
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clonal reads seems a rather overly cautious way of bypassing the
PCR amplification bias and is in fact counterproductive as it
lowers the overall statistical power to detect ASB sites and un-
necessarily discards much of the sequencing data.

5 CONCLUSION

We have presented a method to identify and reduce the bias of
clonal amplification in AS analysis of ChIP-seq data. This ap-

proach analyzes the read alignment distribution around het-
erozygous SNP sites and removes highly clonal, low-
complexity sites based on expectations about the distribution

of reads covering SNP sites. Given the current interest in under-
standing the interplay between DNA variants and gene regula-
tion, this approach should be of general interest.
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