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Abstract

Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its
flanks. To assess the possible mechanism(s) underlying this ‘‘neighboring effect’’, we compared intrachromosomal
interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using
chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome
critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of
which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of
flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed
concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can
lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating
expression globally and modifying the phenotype. GEO Series accession number: GSE33784, GSE33867.

Citation: Gheldof N, Witwicki RM, Migliavacca E, Leleu M, Didelot G, et al. (2013) Structural Variation-Associated Expression Changes Are Paralleled by Chromatin
Architecture Modifications. PLoS ONE 8(11): e79973. doi:10.1371/journal.pone.0079973

Editor: Brian P. Chadwick, Florida State University, United States of America

Received February 26, 2013; Accepted October 7, 2013; Published November 12, 2013

Copyright: � 2013 Gheldof et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the European Commission anEUploidy Integrated Project (grant 037627), the Swiss National Science Foundation and a
SNSF Sinergia grant to AR. RMW was supported by a fellowship from the doctoral school of the Faculty of Biology and Medicine, University of Lausanne. NG is a
grantee of the Marie Heim Vögtlin and the Pro-Women programs of the SNSF and the Faculty of Biology and Medicine, University of Lausanne, respectively.The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nele.gheldof@rd.nestle.com (NG); alexandre.reymond@unil.ch (AR)

. These authors contributed equally to this work.
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Introduction

Copy number variation (CNV) of genomic segments is frequent

in human [1] and model organisms (e.g. mouse [2–6]). More than

66,000 human CNVs mapping to 16,000 regions have so far been

identified (http://projects.tcag.ca/variation/). They significantly

contribute to genetic variation, covering more nucleotide content

per genome than single nucleotide polymorphisms (e.g. approx-

imately 0.8% of the length of the human genome differs between

two human individuals [7]). Multiple associations between these

structural changes and susceptibility to disease have been

uncovered (reviewed in [8–12]). One of these is the Williams-

Beuren syndrome, a multi-system disorder caused by a recurrent

megabase-scale segmental deletion (WBS, MIM ID #194050,

[13]).

CNVs impact tissue transcriptomes on a global scale by

modifying the level and timing of expression of genes that localize

within the CNV [14,15] and on its flanks [5,6,16–18], an effect

that can extend over the entire length of the affected chromosome

[19]. Structural changes per se, i.e. without changes in gene dosage

were shown to profoundly impact the phenotypic outcome, as

some phenotypic traits present in Smith-Magenis (deletion) and

Potocki-Lupski syndromes (reciprocal duplication) mouse models

were not rescued by restoration of the copy number in a strain

carrying both the deletion and duplication on different alleles [19].

The mechanism(s) behind this chromosome-wide effect is(are)

currently unknown. One hypothesis is that some of the genes that

map within a rearrangement, and thus vary in dosage, directly or

indirectly affect the expression of normal dosage flanking genes.

However, as in multiple instances we found the flanking genes to

be altered independent of CNV dosage (i.e. both the deletion of a

given CNV and its reciprocal duplication upregulate the

expression of a flanking gene)[19,20], it is unlikely that this

hypothesis constitute the only mechanism behind this ‘‘neighbor-

ing effect’’. Other mechanisms may include position effect (i.e.

physical dissociation of a transcription unit from its cis-acting

regulators [21]), alteration of chromatin structure locally or

globally [22], and/or repositioning of a genomic region within

the nucleus [23].

As chromatin structure plays an important role in gene

regulation, we anticipate that CNVs will affect the chromatin

structure on a large scale, and hence possibly modify the clinical

phenotype. However, studies investigating the impact of a

structural aberration on long-range chromatin structure have

been lacking. Here, we explored the chromosome-wide effect of

a structural rearrangement on chromatin structure. First, we

studied, by chromosome conformation capture, whether
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non-hemizygous genes neighboring a rearrangement and known

to be affected in their expression levels also show changes in

chromatin structure. Second, we monitored local chromatin

changes as determined by histone modifications in the same cell

lines with a structural rearrangement.

Results

Outlining the chromatin architecture of the WBS region
We have previously shown that GBAS, ASL, KCTD7, HIP1, POR

and MDH2 (normal-copy number genes that map to the flank of

the 7q11.23 deletion that causes WBS) are modified in their

relative expression levels in lymphoblastoid and/or skin fibroblast

cell lines of WBS patients [16]. We replicated these experiments in

a new set of lymphoblastoid cell lines (Table 1). To assess if these

changes are associated with changes in chromatin conformation,

we examined the chromatin interaction landscape of these six

flanking genes in the same lymphoblastoid cells using an

adaptation of the 4C method (4C-seq: Circularized Chromosome

Conformation Capture combined with multiplexed high-through-

put sequencing). This technology allows identification of chromo-

somal regions that physically associate with a given locus, termed

the bait or viewpoint. We included an additional viewpoint at the

transcriptional start site of ZNF107, a gene located between the

GBAS and ASL that did not show any significant change in

expression in WBS versus Control cell lines (Table 1) [16].

Figure 1A shows the windowed interaction profiles for each

viewpoint along the entire human chromosome 7 (HSA7) in the

Ctrl cell line. Results are highly reproducible (0.83# Pearson’s

correlation #0.97; Supplementary Figure S1). After removal

of the strong local background signal, we used a statistical

segmentation algorithm to detect significantly interacting regions

without imposing a fixed window size (see methods) [24,25]. A

stringent and a relaxed false discovery rate were imposed to detect

‘‘long-’’ and ‘‘short-range’’ interactions (within a 25 Mb region

encompassing the WBS deletion), respectively. We identified

between 66 and 152 interacting regions on HSA7 for the seven

tested viewpoints (Supplementary Table S2).

We assessed whether our data are consistent with known

features of chromosome conformation. As previously published we

observed the strongest interactions close to the viewpoints, a

clustering of gene-dense regions and possible regulatory regions

and that loci interact more frequently with regions along the same

chromosomal arm [26,27] (Figure 1A). Chromosome-wide

interactions of all viewpoints are significantly enriched in gene-

dense regions (P = 0.09 for GBAS, P,0.05 for all other 6

viewpoints, permutation test with number of permutations

N = 10000). We also found a positive correlation between the

number of viewpoints with which a region interacts and the gene

density of that particular region: regions interacting with all, five

(excluding GBAS), two or only a single viewpoint(s) have a gene

density of 4.861022, 4.161022, 1.761022, 0.361022 RefSeq

genes/kilobase, respectively. We then compared chromosome-

wide interactions with the ENCODE data set of expressed genes

from the GM12878 lymphoblastoid cell line [28,29] and found

significant enrichment in expressed genes (P = 0.25 for ZNF107,

and P,0.05 for all other viewpoints, permutation test with

number of permutations N = 1000). We also investigated whether

regulatory elements were enriched in the interacting regions.

Towards this goal we used the ENCODE datasets of different

regulatory marks from the same GM12878 cell line including

H3K4me1, H3K27ac, p300, CTCF, DNaseI hypersensitive sites

(DHSs) and FAIRE sites [29,30]. Not only the expressed genes,

but also these marks of functional elements were significantly

enriched in the interacting regions at all viewpoints except for

p300 (Supplementary Table S3). A large fraction of the

interacting regions are shared between multiple viewpoints on the

long arm of HSA7 (Supplementary Figure S3). For example,

23% (28/121) of the regions found to interact with POR also

interact with the ASL, KCTD7, HIP1 and MDH2 viewpoints. They

cluster however less with the GBAS viewpoint, which maps to the

short arm of HSA7. An exception is ZNF107, which maps close to

the centromere, and interacts frequently with the other side of the

centromere. The robustness of the 4C assays is finally further

exemplified by the fact that many of the reported interactions are

identified reciprocally (see below).

We next zoomed in on the interaction profiles of the viewpoints

around the WBS critical region (WBSCR) (Figure 1B). For the

three genes immediately downstream of the WBS deletion (HIP1,

POR and MDH2), we observed higher interactions with the entire

WBS deletion region when compared to the region telomeric to

these viewpoints. This could in part be due to spatial clustering of

active gene-dense regions [31,32] as the WBSCR contains more

genes than the equidistant downstream flanking region. Even

though extensive interactions were seen with the entire critical

region, these three genes interact primarily with the region that

includes the elastin (ELN), LIMK1, EIF4H and CLIP2 genes

(Supplementary Figure S4). We also found interactions with

the centromeric low-copy repeat (LCR) region, but we cannot

exclude that this merely reflects its high similarity with the nearby

telomeric LCR. Alternatively, as the HIP1, POR and MDH2

viewpoints are immediately adjacent to the telomeric LCR, this

interaction loop might be a chromatin loop caused by the

mispairing of these two repetitive and highly homologous

sequences. Existence of such loop was postulated to facilitate

excision and thus deletion of the intervening sequence causing

WBS [33]. The centromeric genes, ZNF107, ASL and KCTD7 that

map at a greater distance of the WBSCR than the telomeric

viewpoints, also loop with that genomic interval albeit not as

strongly (Figure 1B). The GBAS gene located 17 Mb away from

the WBSCR and on the other arm of HSA7, does not directly

interact with the WBSCR.

Apart from interactions within the WBSCR, we also found

significant interactions between the expression-modified genes

themselves (Figure 1B). Many of these interactions and their

relative intensities are reciprocal (i.e. the same architecture with

the same intensity is identified using two different starting

viewpoints). Some other interesting interacting partners shared

between telomeric and centromeric viewpoints include the genes

CALN1 and AUTS2. Coherently, the expression of AUTS2 is

significantly downregulated in WBS cells (Table 1) confirming

previous results [16]. ZNF107, which is not significantly changed

in expression in WBS patient cell lines, also interacts with some of

its neighboring genes including the HIP1/MDH2 region and a

region within the WBSCR.

Structural changes concurrently modify gene expression,
chromatin architecture and histones marks

To address whether changes in expression of flanking genes

upon deletion of the WBSCR are congruent with modifications in

chromatin loops, we replicated the 4C assays in a lymphoblastoid

cells from a female WBS patient (Figure 2B, Supplementary
Figures S5,S6). Overall there is no drastic reorganization of the

chromatin. In most cases, interactions are not abrogated but only

modified in their intensity in cells with the 7q11.23 microdeletion

consistent with the maintenance of one normal allele. From 58%

(GBAS) to 89% (MDH2 viewpoint), of the interacting regions are

shared between the Ctrl and WBS cell lines. We next calculated

CNVs, Chromatin and Expression
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changes in interaction frequency in both cell lines and determined

positive and negative ratio Bricks, corresponding to interactions

that are significantly increased or decreased in WBS cells,

respectively (see Supplementary Figure S2 for a detailed

pipeline). We found that interactions within the WBSCR are on

average decreased approximately two-fold in the WBS cells for the

viewpoints mapping close to the WBSCR (MDH2, POR, HIP1,

KCTD7 and ZNF107), consistent with normal looping intensity in

the remaining allele and absence of interaction in the deleted allele

(Figure 2A). Interestingly, interactions between KCTD7 and a

region around the CLIP2 and GTF2IRD1 genes within the

WBSCR were more than two fold diminished in WBS cells. We

used the ENCODE datasets from the GM12878 lymphoblastoid

cell line to search for regulatory elements within this region

[29,30], and found many regulatory marks within this region. In

particular we pinpointed a CTCF binding site (highlighted with a

red asterisk in Figure 2A), which overlaps with both marks of

open chromatin (defined by DHSs and FAIRE) and a H3K4me1

binding site. As a result of the deletion, on the rearranged allele the

viewpoints are positioned closer on the linear DNA molecule to

the region mapping on the other side of the WBSCR. Interaction

between these viewpoints and regions beyond the deletion may

therefore be increased in WBS cells as previously found in the

study of structural rearrangements with 4C [34]. We failed to

identify such changes (Figure 2B), possibly because our

viewpoints map too far away from the breakpoints (HIP1 the

closest viewpoint maps more than 1 Mb away). We hypothesized

that only specific DNA/gene loops between regions on opposite

sides of the WBSCR might be changed with the deletion,

complicating the chromatin landscape. Corroboratively, in WBS

cells the GBAS viewpoint is closer in space to the HIP1, POR and

MDH2 genes, while the POR viewpoint and the AUTS2 gene

interact less (Figure 2B). We then searched for enrichment of the

six marks of regulatory chromatin taken from the ENCODE data

on GM12878 cells in the differentially interacting regions. We

found less consistent correlations as compared to interacting

regions in Ctrl cells alone, except for enrichment of DHSs at most

viewpoints (Supplementary Table S3), both at positive and

negative ratio Bricks. In some instances, we identified interesting

patterns of changes: around genes particularly, an increased

interaction in WBS cells was concomitant with flanking reduction

of looping intensity (Supplementary Figure S7). This observa-

tion suggests that chromatin reorganization is not dramatic, but

rather that the intensity of long-range interactions is modified

locally around certain loci. This is consistent with other work that

showed that chromatin reorganization is mirrored in local changes

in interactions (e.g. on the Hox gene clusters [25]) and that

chromatin has constrained mobility [31,35,36].

To gain insights into the effects of a structural rearrangement on

the chromatin landscape at the nucleosome level, we also

monitored histone modifications on a genome-wide scale. We

measured by ChIP-seq the status of H4K20me1 (monomethyla-

tion of Lysine 20 of histone H4) and H3K27me3 (trimethylation of

Lysine 27 of histone H3), as proxies for open and condensed

chromatin, respectively [37], in lymphoblastoids of a female

patient affected by WBS, and compared them to the female Ctrl

individual. We found that 4C interacting regions of the six long

arm viewpoints are enriched in H4K20me1 marks compared to

the rest of chromosome 7 in Ctrl cells (P = 161024 for ASL, HIP1,

POR and MDH2, P = 661024 for KCTD7 and P = 461022 for

ZNF107, permutation test N = 10000), consistent with the

clustering of open, actively transcribed regions (Figure 1A).

H3K27me3 epigenetic marks are similarly enriched in regions

interacting with the POR and ASL viewpoints (P = 1x1023,

permutation test N = 10000), suggesting that chromatin clustering

might be determined more by the presence of genes than

accessibility of the chromatin (Figure 1A). Overlapping islands

of both open and closed chromatin marks were observed in

mammalian embryonic stem cells and differentiated cells, as well

as in various ENCODE cell lines [38–41]. These regions are

defined as ‘‘bivalent domains’’, in which gene promoters are in a

poised state with very low levels of transcription. Significant

changes in histone modifications in WBS versus Ctrl cells occurred

within the WBSCR (as a result of its copy number change) but also

Table 1. Expression changes and chromatin architecture modifications in WBS cells.

Expression (this work) Expression (ref 16)
H4K20me1
changes *

H3K27me3
changes

Gene Category Ctrl WBS WBS/Ctrl WBS/Ctrl

AREL SD AREL SD
AREL
ratio t Test P

AREL
ratio t Test P

GBAS viewpoint 0.874 0.095 0.431 0.010 0.493 0.014 0.74 0.02 20.67 NS

ASL viewpoint 0.033 0.005 0.046 0.004 1.424 0.029 1.59 0.004 1 NS

KCTD7 viewpoint 0.067 0.006 0.061 0.003 0.922 0.272 0.39 0.004 20.1 NS

HIP1 viewpoint 0.119 0.019 0.048 0.013 0.403 0.009 0.47 0.02 0.81 1.38

POR viewpoint 0.241 0.064 0.201 0.029 0.833 0.401 0.89 0.37 20.73 NS

MDH2 viewpoint 9.229 0.321 12.32 0.195 1.335 0.0004 1.23 0.002 20.22 NS

ZNF107 control viewpoint 20.90 2.717 21.87 1.701 1.046 0.633 0.85 0.24 20.96 NS

AUTS2 novel interactor 2.739 0.101 0.680 0.006 0.248 0.001 0.35 0.06 21.55 2.58

CALN1 novel interactor BDL BDL BDL 20.45 0.77

WBSCR22 positive control 0.277 0.031 0.125 0.024 0.451 0.003 0.43 0.0003 21.67 NS

Changes in expression and chromatin structure in WBS (GM13472) versus Ctrl (GM07006) cells. Changes in histone marks are presented as the log2-fold ratio between
WBS and Ctrl cells. Statistical analysis was performed by a 2-sample t-Test. Values in italics are not statistically different.
AREL = average relative expression level, BDL = below detection line, NS = no regions within gene were defined as significantly changed,
*most significant block according to SICER within the gene (FDR,1%).
doi:10.1371/journal.pone.0079973.t001
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throughout the flanking regions (Figure 2B). Upon close

examination of the histone modifications at the expression-

modified genes, we found that four of the six expression-modified

genes used as viewpoints (GBAS, POR, ASL and HIP1) show a

statistically significant change in chromatin opening between Ctrl

and WBS cells (Table 1, difference between histone modification

peaks defined by SICER with a FDR,1%, see methods for

details). GBAS and POR show a decrease in H4K20me1 marks that

parallel their diminished relative expression level in WBS patient

cells, whereas an increase in this mark of open chromatin is seen at

the ASL locus concomitant to its higher expression (Table 1).

Similarly, AUTS2 and CALN1, which are interaction partners of

several of the studied viewpoints showed significant chromatin

changes in WBS cells (FDR,1%). HIP1 shows an increase in

H4K20me1 that does not parallel its diminished expression in

WBS cells. However, it also presents a significant increase in

H3K27me3 marks, which parallels its change in expression

(Table 1). ZNF107 presents a significant decrease in

H4K20me1 marks in WBS cells even though its expression is

not modified in these cells. In summary, structural changes may

induce concurrent changes in gene expression, chromatin

architecture and histones marks.

Discussion

Structural variants have been shown to capture 10% to 25% of

the expression variance [17,42]. They influence gene expression

by modifying gene dosage and altering the expression of normal-

copy number genes located in their vicinity [5,6,15,16,43]. This

effect can be long range with changes in expression of

genes positioned megabases away [19,23]. We investigated the

underlying mechanism of genome organization by combining

high-throughput chromosome conformation capture and chromo-

some-wide profiling of histone modifications. Our results suggest

that structural rearrangements can influence expression levels of

flanking normal-copy genes in part by affecting large-scale

chromatin conformation in various ways.

Figure 1. Extensive chromatin interactions of seven genes flanking the WBSCR on human chromosome 7 (HSA7) in cells from a
healthy control individual. (A) Windowed and normalized 4C signal of each of the seven viewpoints along the entire HSA7. The black ticks below
each graph show the location of the Bricks (Blocks of Regulators In Chromosomal Kontext). The gene density across HSA7, as well as the windowed
profiles of H4K20me1 and H3K27me3 marks in the same cell line are shown below. Some examples of strong correlation of gene-dense regions and
high density of H4K20me1 marks with highly interacting regions are highlighted in blue. The mapping of the assessed genes/viewpoints and of the
WBSCR is indicated at the bottom. The red box specifies the close-up shown in panel B. (B) Close-up of the windowed 4C signal of the seven
viewpoints around the WBSCR for the region indicated with a red box on HSA7 (top panel). The windowed 4C signal is shown in grey, while the
profile corrected 4C signal (after removal of the highly interacting neighboring background signal) is overlaid in black. The position of all genes are
displayed at the bottom, and the mapping of the assessed viewpoints is highlighted by red and green arrows indicating if the corresponding genes
are down- or upregulated in cells from WBS patients, respectively. Black arrows underscore the mapping of the viewpoint that is not modified in gene
expression (ZNF107) and the newly identified interacting partners AUTS2 and CALN1. The location of the WBSCR is indicated by a purple horizontal
bar. A close-up of interactions within this WBSCR is provided in Supplementary Figure S4.
doi:10.1371/journal.pone.0079973.g001
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First, deletion of specific long-range regulatory elements within

the rearrangement, such as enhancers and/or boundary elements,

can cause changes in their finely tuned regulatory function and

thus in the expression of their target genes. Concordantly, we

detect alterations of intrachromosomal interactions (chromosomal

looping) between expression-affected gene loci and the rearranged

Figure 2. Modification of short-range interactions in WBS compared to control cells. (A) Close-up of the log2-fold interaction changes in
WBS versus Ctrl within the WBSCR. The black line indicates the median of the changes within the WBSCR, which is also displayed at the right of each
graph. The dashed lines show the 95% confidence interval. The positions of all genes are displayed at the bottom with purple arrows. The area
highlighted in grey pinpoints the higher interactions in Ctrl cells between the KCTD7 viewpoint and the region around the CLIP2 and GTF2IRD1 genes.
The black ticks below show the location of the five marks of regulatory regions in GM12878 cells (as found in the ENCODE data), including CTCF
binding sites, DHSs, FAIRE sites, H3K27ac and H3K4me1 and binding sites, with one overlapping mark highlighted with a red asterisk. (B) Windowed
4C signal of each of the seven viewpoints in both Ctrl and WBS cells around the WBSCR (see the legend of Figure 1B for details about the structures
outlined). The log2-fold change of the windowed 4C data in WBS over control cells was calculated, and the resulting positive or negative Bricks are
indicated below each viewpoint graphs, by blue or red bars, respectively. The significant changes in histone marks (as defined by SICER) are plotted
below by ticks.
doi:10.1371/journal.pone.0079973.g002
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interval in WBS cells using chromosome conformation capture.

Some of these alterations go beyond the expected two-fold

decrease. Specifically, we observe that the interaction between

the KCTD7 viewpoint and the region between CLIP2/GTF2IRD1

is abolished in WBS cells rather than diminished by 50%,

suggesting allele-specific chromatin interaction, which was recently

postulated by studying the inactive X chromosome [44]. We infer

that chromosome looping can be allelically biased through allele-

specific regulatory activity and/or gene expression [45–47].

Interestingly, a number of regulatory marks are located within

this region in the corresponding GM12878 lymphoblastoid cell

line monitored by the ENCODE project. One particular mark of

open chromatin (detected by both DNase hypersensitivity and

FAIRE) in this region coincides with H3K4me1 modifications, an

enhancer mark, but also CTCF binding.

Second, in addition to modifying specific cis-acting DNA

regulatory elements, a structural rearrangement could also exert

its effect on gene expression by changing the overall chromatin

topology and DNA accessibility. Genes might be co-regulated by

clustering into ‘‘chromatin globules’’ independently of functional

relationship [48]. A strong correlation between interaction

frequency and the position of DNase I hypersensitivity sites shows

that the organization of the chromatin is tightly linked to the

accessibility to regulatory factors [31,49,50]. Dislocation of a

spatially clustered set of genes might disrupt or modify specific

position effect as well as chromatin accessibility, and thereby affect

the expression of these genes – even if this clustering is driven by

gene density. Consistent with these assumptions, we observed

frequent interactions between the normal-copy genes flanking the

WBSCR and the critical interval itself. The identified chromatin

interactions are modified in cells from WBS patients, suggesting

that changes in the genome structure cause concomitant

modifications of chromatin interactions and histone marks. The

complexity of the observed changes prevents us to distinguish

whether the changes are a primary or secondary effect of the

mechanisms described above. The observed changes are however

not restricted to genes that show significant expression changes in

WBS cells as we also observe chromatin architecture and histone

marks modifications of the ZNF107 locus hinting that other

mechanisms must also be at play.

Some of these modifications may be associated with specific

phenotypic features observed in genomic disorders patients. A

tantalizing example from our study is the AUTS2 gene. Its looping

architecture, chromatin structure changes and expression modi-

fication in WBS cells designate this gene as a potential candidate in

some of the phenotypes shown by WBS or WBRdupS patients.

AUTS2 is mutated or translocated in autistic patients and

individuals with intellectual disabilities [51–53], phenotypes shared

by patients with Williams-Beuren region duplication syndrome.

Even though the lymphoblastoid cell lines used in this study might

not be the best target cell/tissue for many of the genes involved in

these disease processes, experiments with these cells are still worth

pursuing, simply because we cannot exclude a broad to ubiquitous

expression pattern for these genes. Of note previous experiments

have shown a high degree of correlation in gene expression levels

between different tissues/cell lines for the genes mapping within

the aneuploid segments [16,54]. Further studies are warranted to

confirm that AUTS2 expression is modified in other tissues.

Materials and Methods

All lymphoblastoid cell lines used in this study were collected

with written appropriate informed consent and approval of the

local ethics committee (i.e. "Commission cantonale vaudoise

d’éthique de la recherche sur l’être humain http://www.unil.ch/

Jahia/site/fbm/op/edit/pid/36053), made exception of the WBS

(GM13472) and Control (Ctrl, GM07006) lines that were obtained

from the Coriell Institute for Medical Research Biobank (http://

www.coriell.org/).

Cells
Cells were grown in RPMI 1640 medium (Gibco) with addition

of 10% fetal calf serum and 1% penicillin-streptomycin. The

rearrangement was examined by array CGH using Human CGH

3x720K whole-genome tiling array (Nimblegen) following the

manufacturer’s protocol. Known changes in the expression levels

of GBAS, ASL, KCTD7, HIP1, POR and MDH2 in WBS patient cell

lines were confirmed in GM13472 relative to the Ctrl cell line cells

by Taqman real-time quantitative PCR using previously published

primers pairs and probes [16].

Circularized Chromosome Conformation Capture –
sequencing (4C-seq)

The 4C-seq assay was performed as described in [55] and based

on the 4C protocol developed by [32,56]. Briefly, GM07006 (Ctrl)

and GM13472 (WBS) lymphoblastoid cell lines were grown at

37uC. 56107 exponentially growing cells were harvested and

crosslinked with 1% formaldehyde, lysed and cut with the

restriction enzyme BglII. After ligation and reversal of the

crosslinks, the DNA was purified to obtain the 3C library. This

3C library was further digested with NlaIII and circularized to

obtain a 4C library. The inverse PCR primers to make the 4C-seq

templates were designed to contain the Illumina adaptor tails, as

well as the bait-specific sequences for each of the seven loci we

interrogated. The list of primers is described in Supplementary
Table S1. The seven viewpoints were selected at the BglII

fragment containing the transcriptional start sites of four genes

located upstream of the WBSCR (GBAS 16.7 Mb, ZNF107

8.8 Mb, ASL 7.6 Mb, and KCTD7 7 Mb upstream respectively),

and three other genes located immediately downstream of the

WBSCR (HIP1 0.7 Mb, POR 0.96 Mb and MDH2 1 Mb

downstream respectively). For the three nearby downstream

viewpoints, we amplified at least 0.6 mg of 4C template, whereas

for the further away upstream viewpoints, we amplified at least

1 mg of 4C template (using about 100 ng per inverse PCR

reaction). We multiplexed the 4C-seq templates by pooling the

samples in equimolar ratios in two sets, representing 3 viewpoints

each (POR, KCTD7 and GBAS in one set and ASL, MDH2 and

HIP1 in the second set). Replicate 4C libraries were prepared for

both the Ctrl and the WBS cell lines. We randomly selected three

viewpoints (ASL, POR and MDH2) and replicated the experiments.

All 4C-seq multiplexed samples were analyzed on a Illumina

GAIIx flow-cell using a 76-bp single-end sequencing run. These

studies were completed with a 4C assay with viewpoint mapping at

the transcriptional start site of ZNF107. This gene did not show

any significant change in expression in WBS versus Control cell

lines [16]. This additional 4C-seq library was prepared from the

same 4C template and run on a 100-bp single-end Illumina HiSeq

flow cell.

4C-seq data analysis
4C-seq data were analyzed as described in [55]. Briefly, the

multiplexed samples were separated, undigested self-ligated reads

removed, and the reads mapped to a virtual library of BgIII

fragments. Reads were then normalized to the total number of

reads. A running mean algorithm was applied to smooth the data

(19 fragments per window). As the data from the three replicated
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viewpoints were strongly correlated (Supplementary Figure
S1), we used the average of each data point for these experiments.

To remove the strongly interacting local ‘‘background’’ region, we

modeled the data to apply a profile correction similar to the one

described in [26] using a fit with a slope -1 in a log-log scale [31].

We used a domainogram algorithm to detect significantly

interacting regions without imposing a fixed window size [24].

The positive signals were ranked per chromosome and Bricks

(Blocks of Regulators In Chromosomal Kontext) were called based

on a FDR threshold of 0.1 for ‘‘short-range’’ interactions, defined

as interactions within 2.5 Mb up- and downstream of GBAS and

MDH2, the first and last viewpoint, respectively (HSA7 coordi-

nates: 53,532,296–78,116,172; about 25 Mb around the

WBSCR). As long-range interactions are more prone to random

ligation events, we used a more stringent FDR threshold of 0.001

for the genomic space outside of these borders (called the ‘‘long-

range’’ region). Interacting regions were then defined by merging

consecutive Bricks. To determine differentially interacting regions

between the WBS and Ctrl cells, we first computed the log2 ratio

of WBS over Ctrl of the smoothed profile corrected data and

selected ratio Bricks that were specific to either WBS or Ctrl

(Supplementary Figure S2). To assess the significance of those

regions we quantified the number of reads inside each Brick, and

averaged over consecutive Bricks within each region. We then

compared the distribution of the (Ctrl+WBS) log counts in these

regions versus Bricks outside by a Wilcoxon rank-sum test. We

obtained very significant p-values (ASL: 2.4e–28, GBAS: 8.4e–78,

HIP1: 4.3e–74, KCTD7: 4.1e–54, MDH2: 6.2e–18, POR: 1.3e–

46 and ZNF: 3.6e–80), indicating that selected ratio Bricks

contained a significantly higher number of reads than all Bricks.

4C data are deposited under accession number GSE33867.

To estimate if the long-range interactions of the seven

viewpoints were significantly enriched in genes or histone

modifications we performed permutation tests (n = 10000) with

all RefSeq genes or histone modified regions identified by SICER

with a FDR = 161024. To permute the interacting regions we

used shuffleBed from BEDtools version 2.10.1 [57]. For compar-

ison with expressed genes only, we used the published ENCODE

expressing datasets from the lymphoblastoid cell line GM12878

which is similar to our Ctrl cells (wgEncodeCaltechRna-

SeqGm12878R2x75Th1014Il200SigRep1V4rep1 and wgEncode-

CaltechRnaSeqGm12878R2x75Th1014Il200SigRep2V4 [58]).

To search for correlation of our interacting maps with regulatory

elements, we also used the ENCODE database Specifically, we

used the ChIP-seq peaks called on chr7 for six marks: CTCF,

p300, H3K4me, H3K27ac binding sites, as well as regions of open

chromatin defined by DNase HS and FAIRE

Chromatin Immunoprecipitation - sequencing (ChIP-seq)
Crosslinking was performed by adding formaldehyde solution

(Sigma Aldrich) to the cells in growth medium to a final

concentration of 0.5%. After 5-minute incubation at room

temperature, cross-linking agent was quenched with glycine.

16106 cells were centrifuged and used directly in the ChIP assay.

Cells were lysed by addition of cell lysis buffer (1% SDS, EDTA,

Tris-HCl pH 8.1) and 10- minute incubation on ice. Next,

chromatin was sheared using a Bioruptor sonicator (Diagenode) at

medium power settings (30 seconds on – 30 seconds off cycles for

45 minutes). Sonication efficiency was tested by reversing cross-

links of a chromatin sample and running the obtained DNA on a

1.5% agarose gel. Fragmented chromatin was used directly in the

ChIP assay or frozen at 280uC for latter usage.

ChIP was performed as suggested in [59]. Briefly, chromatin

was diluted 10-fold in ChIP dilution buffer (0.01% SDS, 1.1%

Triton X100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.1,

167 mM NaCl) and subsequently immunoprecipitated using

antibodies raised against H3K27me3 (Millipore 07-449) and

H4K20me1 (Abcam ab9051). The antibody-histone complex

was collected using magnetic beads (Invitrogen). Beads were

washed twice with dialysis buffer (2 mM EDTA, 50 mM Tris-HCl

pH 8.0, 0.2% sarcosyl) and four times with wash buffer (100 mM

Tris-HCl pH 9.0, 500 mM LiCl, 1% NP40, 1% sodium

deoxycholate). DNA was then eluted and the crosslinks reversed.

Following RNase A and proteinase K treatments, samples were

purified using DNA purification kit (Qiagen). The concentration of

DNA was measured using a Qubit instrument (Invitrogen) and

10 ng of each sample was used for library preparation. Enrich-

ment of the precipitated DNA was assessed by comparing the

levels of DNA corresponding to known open and closed chromatin

regions by quantitative PCR. Primer pairs corresponding to exon

2 of GAPDH and intron 5 of the GRM8 gene were used for the

H4K20me1 and H3K27me3 ChIP, respectively. The same primer

pairs were used reciprocally as negative controls.

Sequencing libraries of immunoprecipitated DNA samples were

prepared as described by the manufacturer (Illumina) and then

sequenced on two lanes of an Illumina GAIIx flow-cell each (single

end, 36mer tags). Sequencing reads were mapped to the human

reference genome (hg19, GRCh37) using Bowtie algorithm

allowing 2 mismatches and no seed [60]. Duplicates potentially

arisen were removed, i.e. only a single tag was retained from

identical sequences [61]. Note that in the remaining analyses, we

only considered uniquely matching tags, i.e. between 21.7 and

32.16106 and 3.3 and 15.36106 for H4K20me1 and H3K27me3,

respectively.

The identification of ChIP-enriched regions was performed

assuming a Poisson distribution of the tag counts by using SICER

[62] version 1.1 with two libraries (SICER-df-rb.sh) and the

following parameters: window size 200 bp, gap size 400 bp, for

H4K20me1 and gap size 600 bp for H3K27me3 as suggested by

the package authors, and E-value 100. We selected candidate

islands with a FDR = 161024 defined by SICER for the Ctrl and

the rearranged sample and further used these islands to assess

statistical significance of differential modification of a given region

using the DEseq package [63] which assumes a negative binomial

distribution of the tag counts. As a positive control, we verified the

change in ChIP-tags in the rearranged interval and found a

correlation between the decrease in ChIP-tags and the two-fold

lower copy number of the deleted region. To identify genes that

were significantly altered in their chromatin status - and thus

possibly also in expression - we screened the chromatin changes of

RefSeq genes defined according to the genomic coordinates [64].

ChIP-seq data are deposited under accession number GSE33784.

Supporting Information

Figure S1 Reproducibility of 4C-seq experiments. (A)

Mirror plot of the windowed 4C scores of two biologically

independent replicates using MDH2 as viewpoint (Pearson

correlation = 0.97). (B) Overview of the number of mappable

reads per viewpoint and per cell line, as well as Pearson correlation

coefficient between bioreplicates.

(PDF)

Figure S2 Steps followed to generate the ratios BRICKS.
To allow the identification of BRICKS with a negative log2 ratios,

we run the domainogram algorithm by sorting the data on an

ascending order, which puts the high negative ratios on top

position of the initial ranking. The two sets of BRICKS have been

treated independently, in the following way: 1) selecting and
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grouping consecutive BRICKS as described in the material &

methods, 2) removing BRICKS found in both datasets (for

overlaps greater than 5%), 3) removing genomics gaps (UCSC,

hg19) from BRICKS and 4) excluding BRICKS that were not part

of a selected BRICKS in either Ctrl or WBS BRICKS. Finally

both sets were grouped together to form a unique set of BRICKS.

(PDF)

Figure S3 Heatmap showing the percent coverage of
HSA7 by Bricks of each viewpoint, as well as the percent
of HSA7 that overlaps between Bricks of the different
viewpoints, indicating that the viewpoint interactions
cluster by their linear chromosomal position.
(PDF)

Figure S4 Close-up of the interactions of the seven
viewpoints with the WBSCR in cells from a healthy
control individual. The two areas highlighted in grey show the

strongly interacting regions at the LCRcen (centromeric LCR) and

the region within WBSCR. Pink boxes indicate the mapping of

genes within the WBSCR.

(PDF)

Figure S5 Interactions of seven genes on HSA7 in cells
from a WBS patient. Windowed 4C signal of each of the seven

viewpoints along the entire chromosome. The black ticks below

each graph show the location of the Bricks. The density of genes is

shown at the bottom. Areas highlighted in blue pinpoint some

examples of strong correlation of gene-dense regions with

H4K20me1 marks and highly interacting regions. The mapping

of the viewpoints and the WBSCR is indicated at the bottom.

(PDF)

Figure S6 Close-up of the interactions of the seven
viewpoints with the WBSCR in cells from a WBS patient.
The two areas highlighted in grey show the strongly interacting regions

at the LCRcen (centromeric LCR) and the region within WBSCR.

Pink boxes indicate the mapping of genes within the WBSCR.

(PDF)

Figure S7 Examples of regions with modified interac-
tions with the POR viewpoint. The y-axis represents

postprocessed normalized counts. The log2-fold change of the

windowed 4C data in WBS over Ctrl cells is plotted. Positive or

negative Bricks are indicated below each viewpoint graph, by blue

or red bars, respectively. In WBS cells, the region around the

CDK6 gene (A) or sonic hedgehog (SHH gene) (B) interacts with the

POR gene, whereas in Ctrl cells, the flanking regions interact more

frequently, indicating local changes in interactions.

(PDF)

Table S1 4C-seq primer sequences.

(PDF)

Table S2 Overview of the location of Bricks per
viewpoint for control and WBS cells, as well as the ratio.

(PDF)

Table S3 Correlation analyses between six different
marks of regulatory elements and interacting regions in
Ctrl cells (Ctrl Bricks), in all differential interacting
regions significantly decreased (negative ratio Bricks) or
increased (positive ratio Bricks) in WBS versus Ctrl
cells. Permutation test with number of permutation = 1000.

Significant p-values are highlighted in grey.

(PDF)
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