334 research outputs found

    Metal shearing energy absorber

    Get PDF
    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base

    Metal-shearing energy absorber

    Get PDF
    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts

    Exclusion of Stellar Companions to Exoplanet Host Stars

    Get PDF
    Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible low-mass stellar companions to exoplanet host stars. Here we provide the results from a systematic speckle imaging survey of known exoplanet host stars. In total, 71 stars were observed at 692~nm and 880~nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. Our results show that all but 2 of the stars included in this sample have no evidence of stellar companions with luminosities down to the detection and projected separation limits of our instrumentation. The mass-luminosity relationship is used to estimate the maximum mass a stellar companion can have without being detected. These results are used to discuss the potential for further radial velocity follow-up and interpretation of companion signals.Comment: 11 pages, 4 figures, 3 tables, accepted for publication in A

    Stellar Companions to the Exoplanet Host Stars HD 2638 and HD 164509

    Get PDF
    An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important, because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is 0.512 ± 0farcs002 and for HD 164509 is 0.697 ± 0farcs002. This corresponds to a projected separation of 25.6 ± 1.9 au and 36.5 ± 1.9 au, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be 0.483 ± 0.007 M_⊙ and $0.416 ± 0.007, M_⊙, respectively, and their effective temperatures to be 3570 ± 8 K and 3450 ± 7 K, respectively. These results are consistent with the detected companions being late-type M dwarfs

    Stellar companions to the exoplanet host stars HD 2638 and HD 164509

    Get PDF
    An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important, because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD-2638 and HD-164509. The stellar companion to HD-2638 has been previously detected, but the companion to HD-164509 is a newly discovered companion. The angular separation for HD-2638 is 0.512±0 002 and for HD-164509 is 0.697 0. 00 ' 2. This corresponds to a projected separation of 25.6±1.9 au and 36.5±1.9 au, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD-2638 and HD-164509 to be 0.483±0.007-Me and 0.416 0.007 M, respectively, and their effective temperatures to be 3570±8K and 3450±7K, respectively. These results are consistent with the detected companions being late-type M dwarfs

    Revisiting the warm sub-Saturn TOI-1710b

    Full text link
    The Transiting Exoplanet Survey Satellite (TESS) provides a continuous suite of new planet candidates that need confirmation and precise mass determination from ground-based observatories. This is the case for the G-type star TOI-1710, which is known to host a transiting sub-Saturn planet (Mp=\mathrm{M_p}=28.3±\pm4.7M\mathrm{M}_\oplus) in a long-period orbit (P=24.28\,d). Here we combine archival SOPHIE and new and archival HARPS-N radial velocity data with newly available TESS data to refine the planetary parameters of the system and derive a new mass measurement for the transiting planet, taking into account the impact of the stellar activity on the mass measurement. We report for TOI-1710b a radius of Rp\mathrm{R_p}==5.15±\pm0.12R\mathrm{R}_\oplus, a mass of Mp\mathrm{M_p}==18.4±\pm4.5M\mathrm{M}_\oplus, and a mean bulk density of ρp\rho_{\rm p}==0.73±\pm0.18gcm3\mathrm{g \, cm^{-3}}, which are consistent at 1.2σ\sigma, 1.5σ\sigma, and 0.7σ\sigma, respectively, with previous measurements. Although there is not a significant difference in the final mass measurement, we needed to add a Gaussian process component to successfully fit the radial velocity dataset. This work illustrates that adding more measurements does not necessarily imply a better mass determination in terms of precision, even though they contribute to increasing our full understanding of the system. Furthermore, TOI-1710b joins an intriguing class of planets with radii in the range 4-8 R\mathrm{R}_\oplus that have no counterparts in the Solar System. A large gaseous envelope and a bright host star make TOI-1710b a very suitable candidate for follow-up atmospheric characterization.Comment: Accepted for publication in A&A. 21 pages, 14 figure

    BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases

    Get PDF
    We present a new MAX-DOAS profiling algorithm for aerosols and trace gases, BOREAS, which utilizes an iterative solution method including Tikhonov regularization and the optimal estimation technique. The aerosol profile retrieval is based on a novel approach in which the absorption depth of O4 is directly used in order to retrieve extinction coefficient profiles instead of the commonly used perturbation theory method. The retrieval of trace gases is done with the frequently used optimal estimation method but significant improvements are presented on how to deal with wrongly weighted a priori constraints and for scenarios in which the a priori profile is inaccurate. Performance tests are separated into two parts. First, we address the general sensitivity of the retrieval to the example of synthetic data calculated with the radiative transfer model SCIATRAN. In the second part of the study, we demonstrate BOREAS profiling accuracy by validating the results with the help of ancillary measurements carried out during the CINDI-2 campaign in Cabauw, the Netherlands, in 2016. The synthetic sensitivity tests indicate that the regularization between measurement and a priori constraints is insufficient when knowledge of the true state of the atmosphere is poor. We demonstrate a priori pre-scaling and extensive regularization tests as a tool for the optimization of retrieved profiles. The comparison of retrieval results with in situ, ceilometer, NO2 lidar, sonde and long-path DOAS measurements during the CINDI-2 campaign always shows high correlations with coefficients greater than 0.75. The largest differences can be found in the morning hours, when the planetary boundary layer is not yet fully developed and the concentration of trace gases and aerosol, as a result of a low night-time boundary layer having formed, is focused in a shallow, near-surface layer.</p

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars From The Full-Frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters—TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960)—based on data from NASA\u27s Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (RP = 1.01–1.77 RJ) and have masses that range from 0.85 to 6.33 MJ. The host stars of these systems have F and G spectral types (5595 ≤ Teff ≤ 6460 K) and are all relatively bright (9.5 \u3c V \u3c 10.8, 8.2 \u3c K \u3c 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log\mathrm{log} g \u3c 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (RP \u3e 1.7 RJ, possibly a result of its host star\u27s evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.310.30+0.28{6.31}_{-0.30}^{+0.28}MJ and a statistically significant, nonzero orbital eccentricity of e = 0.0740.022+0.021{0.074}_{-0.022}^{+0.021}. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA\u27s TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    OSIRIS – The scientific camera system onboard Rosetta

    Get PDF
    The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 7P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countrie
    corecore