2,069 research outputs found
Partially quenched chiral perturbation theory and numerical simulations
The dependence of the pseudoscalar meson mass and decay constant is compared
to one-loop Partially Quenched Chiral Perturbation Theory (PQChPT) in a
numerical simulation with two light dynamical quarks. The characteristic
behaviour with chiral logarithms is observed. The values of the fitted
PQChPT-parameters are in a range close to the expectation in continuum in spite
of the fact that the lattice spacing is still large, namely a=0.28 fm.Comment: 11 pages, 3 figures; discussion of the results in section 3 extende
A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation
We discuss the renormalisation properties of the complete set of four-quark operators with the heavy quark treated in the static
approximation. We elucidate the role of heavy quark symmetry and other symmetry
transformations in constraining their mixing under renormalisation. By
employing the Schroedinger functional, a set of non-perturbative
renormalisation conditions can be defined in terms of suitable correlation
functions. As a first step in a fully non-perturbative determination of the
scale-dependent renormalisation factors, we evaluate these conditions in
lattice perturbation theory at one loop. Thereby we verify the expected mixing
patterns and determine the anomalous dimensions of the operators at NLO in the
Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is
shown how finite subtractions arising from explicit chiral symmetry breaking
can be avoided completely.Comment: 41 pages, 6 figure
Pressure-induced metallization in solid boron
Different phases of solid boron under high pressure are studied by first
principles calculations. The -B structure is found to be stable
up to 270 GPa. Its semiconductor band gap (1.72 eV) decreases continuously to
zero around 160 GPa, where the material transforms to a weak metal. The
metallicity, as measured by the density of states at the Fermi level, enhances
as the pressure is further increased. The pressure-induced metallization can be
attributed to the enhanced boron-boron interactions that cause bands overlap.
These results are consist with the recently observed metallization and the
associated superconductivity of bulk boron under high pressure (M.I.Eremets et
al, Science{\bf 293}, 272(2001)).Comment: 14 pages, 5 figure
Persistence of social signatures in human communication
The social network maintained by a focal individual, or ego, is intrinsically dynamic and typically exhibits some turnover in membership over time as personal circumstances change. However, the consequences of such changes on the distribution of an ego’s network ties are not well understood. Here we use a unique 18-mo dataset that combines mobile phone calls and survey data to track changes in the ego networks and communication patterns of students making the transition from school to university or work. Our analysis reveals that individuals display a distinctive and robust social signature, captured by how interactions are distributed across different alters. Notably, for a given ego, these social signatures tend to persist over time, despite considerable turnover in the identity of alters in the ego network. Thus, as new network members are added, some old network members either are replaced or receive fewer calls, preserving the overall distribution of calls across network members. This is likely to reflect the consequences of finite resources such as the time available for communication, the cognitive and emotional effort required to sustain close relationships, and the ability to make emotional investments
Overview of Plasma Lens Experiments and Recent Results at SPARC_LAB
Beam injection and extraction from a plasma module is still one of the
crucial aspects to solve in order to produce high quality electron beams with a
plasma accelerator. Proper matching conditions require to focus the incoming
high brightness beam down to few microns size and to capture a high divergent
beam at the exit without loss of beam quality. Plasma-based lenses have proven
to provide focusing gradients of the order of kT/m with radially symmetric
focusing thus promising compact and affordable alternative to permanent magnets
in the design of transport lines. In this paper an overview of recent
experiments and future perspectives of plasma lenses is reported
Development of a high-resolution NGS-based HLA-typing and analysis pipeline
The human leukocyte antigen (HLA) complex contains the most polymorphic genes in the human genome. The classical HLA class I and II genes define the specificity of adaptive immune responses. Genetic variation at the HLA genes is associated with susceptibility to autoimmune and infectious diseases and plays a major role in transplantation medicine and immunology. Currently, the HLA genes are characterized using Sanger- or next-generation sequencing (NGS) of a limited amplicon repertoire or labeled oligonucleotides for allele-specific sequences. High-quality NGS-based methods are in proprietary use and not publicly available. Here, we introduce the first highly automated open-kit/open-source HLA-typing method for NGS. The method employs in-solution targeted capturing of the classical class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). The calling algorithm allows for highly confident allele-calling to three-field resolution (cDNA nucleotide variants). The method was validated on 357 commercially available DNA samples with known HLA alleles obtained by classical typing. Our results showed on average an accurate allele call rate of 0.99 in a fully automated manner, identifying also errors in the reference data. Finally, our method provides the flexibility to add further enrichment target regions
Total Observed Organic Carbon (TOOC): A synthesis of North American observations
Measurements of organic carbon compounds in both the gas and particle phases measured upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 μgC m^−3 from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketene and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink
Heavy Quark Spectroscopy and Matrix Elements: A Lattice Study using the Static Approximation
We present results of a lattice analysis of the parameter, , the
decay constant , and several mass splittings using the static
approximation. Results were obtained for 60 quenched gauge configurations
computed at on a lattice size of . Light quark
propagators were calculated using the -improved Sheikholeslami-Wohlert
action. We find \Bbstat(m_b) = 0.69\er{3}{4} {\rm(stat)}\er{2}{1}
{\rm(syst)}, corresponding to \Bbstat = 1.02\er{5}{6}\er{3}{2}, and \fbstat
= 266\err{18}{20}\err{28}{27} \mev, f_{B_s}^2 B_{B_s}/f_B^2 B_B =
1.34\er{9}{8}\er{5}{3}, where a variational fitting technique was used to
extract \fbstat. For the mass splittings we obtain M_{B_s}-M_{B_d} =
87\err{15}{12}\err{6}{12} \mev, M_{\Lambda_b}-M_{B_d} =
420\errr{100}{90}\err{30}{30} \mev and M_{B^*}^2-M_B^2 =
0.281\err{15}{16}\err{40}{37} \gev^2. We compare different smearing techniques
intended to improve the signal/noise ratio. From a detailed assessment of
systematic effects we conclude that the main systematic uncertainties are
associated with the renormalisation constants relating a lattice matrix element
to its continuum counterpart. The dependence of our findings on lattice
artefacts is to be investigated in the future.Comment: 40 pages, uuencoded compressed tar file, containing one LaTeX file
and 14 postscript files (to be included with epsf). Minor change in the value
of the B parameter. Contains corrected value for the B*-B mass splitting.
Version accepted for publication in Phys. Rev.
Heavy Baryon Specroscopy from the Lattice
The results of an exploratory lattice study of heavy baryon spectroscopy are
presented. We have computed the full spectrum of the eight baryons containing a
single heavy quark, on a lattice at , using an
-improved fermion action. We discuss the lattice baryon operators and
give a method for isolating the contributions of the spin doublets
, and to the correlation
function of the relevant operator. We compare our results with the available
experimental data and find good agreement in both the charm and the beauty
sectors, despite the long extrapolation in the heavy quark mass needed in the
latter case. We also predict the masses of several undiscovered baryons. We
compute the \Lambda-\mbox{pseudoscalar meson} and mass
splittings. Our results, which have errors in the range , are in good
agreement with the experimental numbers. For the mass
splitting, we find results considerably smaller than the experimental values
for both the charm and the beauty baryons, although in the latter case the
experimental results are still preliminary. This is also the case for the
lattice results for the hyperfine splitting for the heavy mesons.Comment: 31 pages LaTex, with postscript figures include
- …