431 research outputs found

    Serological immune response to cancer testis antigens in patients with pancreatic cancer

    Get PDF
    Serological screening approaches have allowed for the identification of a large number of potentially relevant tumor antigens in cancer patients. Within this group, cancer testis antigens represent promising targets for cancer immunotherapy, since they are widely expressed in a variety of human cancer entities. In pancreatic cancer, however, there are only few data available about the expression pattern and serological response to cancer testis antigens and other serological-defined tumor antigens. Therefore, we investigated the IgG antibody response against 11 cancer testis antigens (SCP-1, GAGE, LAGE-1a,-1b, CT-7, NY-ESO-1, SSX-1-5) recombinantly expressed on yeast surface (RAYS) in patients with pancreatic cancer (n = 96), chronic pancreatitis (n = 18) and healthy donors (n = 48). We found in 14% of all patients antibody responses to SCP-1, but not to other cancer testis antigens (GAGE, LAGE-1a,-1b, CT-7, NY-ESO-1, SSX-1-5). Antibody response correlated with the expression of SCP-1 in the primary tumor of the respective patient as shown by RT-PCR, immunohistochemistry and Western blot. In contrast, no serological response to cancer testis antigens was observed in healthy donors. The humoral immune response against SCP-1 was associated with the size of tumor, but not with other clinico-pathological parameters such as histology, stage, presence of lymph node metastases, grading, age, gender or gemcitabine treatment. In conclusion, antibody response to cancer testis antigen SCP-1 is found in a proportion of pancreatic carcinoma patients. These results indicate that identification of additional tumor antigens by serological screening of tumor cDNA expression libraries by RAYS is a promising goal in pancreatic cancer

    Stereotactic or conformal radiotherapy for adrenal metastases: patient characteristics and outcomes in a multicenter analysis

    Get PDF
    To report outcome (freedom from local progression: FFLP, overall survival: OS, and toxicity) after stereotactic, palliative, or highly conformal fractionated (> 12) radiotherapy (SBRT, Pall-RT, 3DCRT/IMRT) for adrenal metastases in a retrospective multicenter cohort within the framework of the German Society for Radiation Oncology (DEGRO). Adrenal metastases treated with SBRT (≤ 12 fractions, biologically effective dose, (BED10) ≥ 50 Gy), 3DCRT/IMRT (> 12 fractions, BED10 ≥ 50 Gy) or Pall-RT (BED10 < 50 Gy) were eligible for this analysis. In addition to unadjusted FFLP (Kaplan-Meier/Log-rank), we calculated the competing-risk-adjusted local recurrence rate (CRA-LRR). 326 patients with 366 metastases were included by 21 centers (median follow-up: 11.7 months). Treatment was SBRT, 3DCRT/IMRT, and Pall-RT in 260, 27, and 79 cases, respectively. Most frequent primary tumors were non-small-cell lung cancer (NSCLC; 52.5%), SCLC (16.3%), and melanoma (6.7%). Unadjusted FFLP was higher after SBRT v. Pall-RT (p = 0.026) while numerical differences in CRA-LRR between groups did not reach statistical significance (1-year CRA-LRR: 13.8%, 17.4%, and 27.7%). OS was longer after SBRT v. other groups (p < 0.05) and increased in patients with locally-controlled metastases in a landmark analysis (p < 0.0001). Toxicity was mostly mild; notably, 4 cases of adrenal insufficiency occurred, 2 of which were likely caused by immunotherapy or tumor progression. RT for adrenal metastases was associated with a mild toxicity profile in all groups and a favorable 1-year CRA-LRR after SBRT or 3DCRT/IMRT. 1-year FFLP was associated with longer OS. Dose-response analyses for the dataset are underway

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Genome-Wide Association Study of Alzheimer's Disease Brain Imaging Biomarkers and Neuropsychological Phenotypes in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Dataset

    Get PDF
    Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline

    Electron bunch generation from a plasma photocathode

    Get PDF
    Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to giga-electronvolt (GeV) energies in centimetre-scale distances. This allows the realization of compact accelerators having emerging applications, ranging from modern light sources such as the free-electron laser (FEL) to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre (GV m1^{-1}) wakefields can accelerate witness electron bunches that are either externally injected or captured from the background plasma. Here we demonstrate optically triggered injection and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ''plasma photocathode'' decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical density down-ramp injection, is highly tunable and paves the way to generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultra-high brightness beams

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore