3,528 research outputs found

    Measurement of g-factor tensor in a quantum dot and disentanglement of exciton spins

    Get PDF
    We perform polarization-resolved magneto-optical measurements on single InAsP quantum dots embedded in an InP nanowire. In order to determine all elements of the electron and hole gg-factor tensors, we measure in magnetic field with different orientations. The results of these measurements are in good agreement with a model based on exchange terms and Zeeman interaction. In our experiment, polarization analysis delivers a powerful tool that not only significantly increases the precision of the measurements, but also enables us to probe the exciton spin state evolution in magnetic fields. We propose a disentangling scheme of heavy-hole exciton spins enabling a measurement of the electron spin T2T_2 time

    Development of parasitic Maculinea teleius (Lepidoptera, Lycaenidae) larvae in laboratory nests of four Myrmica ant host species

    Get PDF
    Maculinea butterflies are social parasites of Myrmica ants. Methods to study the strength of host ant specificity in the Maculinea–Myrmica association include research on chemical and acoustic mimicry as well as experiments on ant adoption and rearing behaviour of Maculinea larvae. Here we present results of laboratory experiments on adoption, survival, development and integration of M. teleius larvae within the nests of different Myrmica host species, with the objective of quantifying the degree of specialization of this Maculinea species. In the laboratory, a total of 94 nests of four Myrmica species: M. scabrinodis, M. rubra, M.ruginodis and M. rugulosa were used. Nests of M. rubra and M. rugulosa adopted M. teleius larvae more readily and quickly than M. ruginodis colonies. No significant differences were found in the survival rates of M. teleius larvae reared by different ant species. Early larval growth of M. teleius larvae differed slightly among nests of four Myrmica host species. Larvae reared by colonies of M. rugulosa which were the heaviest at the beginning of larval development had the lowest mean larval body mass after 18 weeks compared to those reared by other Myrmica species. None of the M.teleius larvae was carried by M. scabrinodis or M. rubra workers after ant nests were destroyed, which suggests a lack of integration with host colonies. Results indicate that Myrmica species coming from the same site differ in their ability to adopt and rear M. teleius larvae but there was no obvious adaptation of this butterfly species to one of the host ant species. This may explain why, under natural conditions, all four ants can be used as hosts of this butterfly species. Slight advantages of particular Myrmica species as hosts at certain points in butterfly larval development can be explained by the ant species biology and colony structure rather than by specialization of M. teleius

    Geodesic stability, Lyapunov exponents and quasinormal modes

    Get PDF
    Geodesic motion determines important features of spacetimes. Null unstable geodesics are closely related to the appearance of compact objects to external observers and have been associated with the characteristic modes of black holes. By computing the Lyapunov exponent, which is the inverse of the instability timescale associated with this geodesic motion, we show that, in the eikonal limit, quasinormal modes of black holes in any dimensions are determined by the parameters of the circular null geodesics. This result is independent of the field equations and only assumes a stationary, spherically symmetric and asymptotically flat line element, but it does not seem to be easily extendable to anti-de Sitter spacetimes. We further show that (i) in spacetime dimensions greater than four, equatorial circular timelike geodesics in a Myers-Perry black hole background are unstable, and (ii) the instability timescale of equatorial null geodesics in Myers-Perry spacetimes has a local minimum for spacetimes of dimension d > 5.Comment: 13 pages, 2 Figs, RevTex4. v2: Minor corrections. v3: more minor correction

    Improved performance of the LHCb Outer Tracker in LHC Run 2

    Full text link
    The LHCb Outer Tracker is a gaseous detector covering an area of 5×6m25\times 6 m^2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in ppp p, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20\%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.Comment: 29 pages, 20 figures, minor changes to match the published versio

    On Field Theory Thermalization from Gravitational Collapse

    Full text link
    Motivated by its field theory interpretation, we study gravitational collapse of a minimally coupled massless scalar field in Einstein gravity with a negative cosmological constant. After demonstrating the accuracy of the numerical algorithm for the questions we are interested in, we investigate various aspects of the apparent horizon formation. In particular, we study the time and radius of the apparent horizon formed as functions of the initial Gaussian profile for the scalar field. We comment on several aspects of the dual field theory picture.Comment: 31 pages, 17 figures; V2 Some figures corrected, minor revision. arXiv admin note: substantial text overlap with arXiv:1106.233

    THE CC1 PROJECT – SYSTEM FOR PRIVATE CLOUD COMPUTING

    Get PDF
    The main features of the Cloud Computing system developed at IFJ PAN are described. The project is ïŹnanced from the structural resources provided by the European Commission and the Polish Ministry of Science and Higher Education (Innovative Economy, National Cohesion Strategy). The system delivers a solution for carrying out computer calculations on a Private Cloud computing infrastructure. It consists of an intuitive Web based user interface, a module for the users and resources administration and the standard EC2 interface implementation. Thanks to the distributed character of the system it allows for the integration of a geographically distant federation of computer clusters within a uniform user environment

    Magnetic Liquid Crystals for Molecular Spintronics

    Get PDF
    The magnetic properties of Ni(II) and Cu(II) complexes were measured. In the case of Ni(II) samples strong enhancement of the magnetic susceptibility below 23 K was observed. The model of structural transition was proposed to explain this behavior

    Study of Leading Hadrons in Gluon and Quark Fragmentation

    Get PDF
    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.Comment: 19 pages, 6 figures, Accepted by Phys. Lett.

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
    • 

    corecore