12 research outputs found
Coherence in a transmon qubit with epitaxial tunnel junctions
We developed transmon qubits based on epitaxial tunnel junctions and
interdigitated capacitors. This multileveled qubit, patterned by use of
all-optical lithography, is a step towards scalable qubits with a high
integration density. The relaxation time T1 is .72-.86mu sec and the ensemble
dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu
sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker
level splitting than observed in qubits with amorphous barriers in
equivalent-size junctions. The qubit's inferred microwave loss closely matches
the weighted losses of the individual elements (junction, wiring dielectric,
and interdigitated capacitor), determined by independent resonator
measurements
Sub-micrometer epitaxial Josephson junctions for quantum circuits
We present a fabrication scheme and testing results for epitaxial
sub-micrometer Josephson junctions. The junctions are made using a
high-temperature (1170 K) "via process" yielding junctions as small as 0.8 mu m
in diameter by use of optical lithography. Sapphire (Al2O3) tunnel-barriers are
grown on an epitaxial Re/Ti multilayer base-electrode. We have fabricated
devices with both Re and Al top electrodes. While room-temperature (295 K)
resistance versus area data are favorable for both types of top electrodes, the
low-temperature (50 mK) data show that junctions with the Al top electrode have
a much higher subgap resistance. The microwave loss properties of the junctions
have been measured by use of superconducting Josephson junction qubits. The
results show that high subgap resistance correlates to improved qubit
performance