1,194 research outputs found

    Microbial and metabolic succession on common building materials under high humidity conditions.

    Get PDF
    Despite considerable efforts to characterize the microbial ecology of the built environment, the metabolic mechanisms underpinning microbial colonization and successional dynamics remain unclear, particularly at high moisture conditions. Here, we applied bacterial/viral particle counting, qPCR, amplicon sequencing of the genes encoding 16S and ITS rRNA, and metabolomics to longitudinally characterize the ecological dynamics of four common building materials maintained at high humidity. We varied the natural inoculum provided to each material and wet half of the samples to simulate a potable water leak. Wetted materials had higher growth rates and lower alpha diversity compared to non-wetted materials, and wetting described the majority of the variance in bacterial, fungal, and metabolite structure. Inoculation location was weakly associated with bacterial and fungal beta diversity. Material type influenced bacterial and viral particle abundance and bacterial and metabolic (but not fungal) diversity. Metabolites indicative of microbial activity were identified, and they too differed by material

    Reduced-intensity conditioning permits a significant graft vs leukemia (GvL) effect for acute leukemia

    Get PDF

    Parameters of Pseudo-Random Quantum Circuits

    Get PDF
    Pseudorandom circuits generate quantum states and unitary operators which are approximately distributed according to the unitarily invariant Haar measure. We explore how several design parameters affect the efficiency of pseudo-random circuits, with the goal of identifying relevant trade-offs and optimizing convergence. The parameters we explore include the choice of single- and two-qubit gates, the topology of the underlying physical qubit architecture, the probabilistic application of two-qubit gates, as well as circuit size, initialization, and the effect of control constraints. Building on the equivalence between pseudo-random circuits and approximate tt-designs, a Markov matrix approach is employed to analyze asymptotic convergence properties of pseudo-random second-order moments to a 2-design. Quantitative results on the convergence rate as a function of the circuit size are presented for qubit topologies with a sufficient degree of symmetry. Our results may be theoretically and practically useful to optimize the efficiency of random state and operator generation.Comment: 17 pages, 14 figures, 2 Appendice

    CERN West Area neutrino facility beam line alignment

    Get PDF
    This papers describes the alignment of the West Area Neutrino Beam Line at CERN to the two neutrino experiments CHORUS and NOMAD. The T9 neutrino (n) target position and the position of the magnetic horn were optimised using the secondary muon intensity profiles from the muon pits in the shielding. In the experiments the improved geometry provides a better centred beam (< 5 cm) and a measured increase in the n flux of 8%

    Banking from Leeds, not London: regional strategy and structure at the Yorkshire Bank, 1859–1952

    Get PDF
    Industrial philanthropist Edward Akroyd created the Yorkshire Penny Savings Bank in 1859. Despite competition from the Post Office Savings Bank after 1861 and a serious reserve problem in 1911, it sustained his overall strategy to become a successful regional bank. Using archival and contemporary sources to build on recent scholarship illustrating how savings banks were integrated into local economies and the complementary roles of philanthropy and paternalism, we analyse an English regional bank's strategy, including an assessment of strategic innovation, ownership changes and management structure. This will demonstrate that the founder's vision continued, even though the 1911 crisis radically altered both strategy and structure

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
    • …
    corecore