145 research outputs found

    PI3-kinase mutation linked to insulin and growth factor resistance in vivo

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85alpha regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome - a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome-associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism

    Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic Ξ²-cells

    Get PDF
    Type 2 diabetes mellitus is characterized by insulin resistance and failure of pancreatic Ξ²-cells producing insulin. Autophagy plays a crucial role in cellular homeostasis through degradation and recycling of organelles such as mitochondria or endoplasmic reticulum (ER). Here we discussed the role of Ξ²-cell autophagy in development of diabetes, based on our own studies using mice with Ξ²-cell-specific deletion of Atg7 (autophagy-related 7), an important autophagy gene, and studies by others. Ξ²-cell-specific Atg7-null mice showed reduction in Ξ²-cell mass and pancreatic insulin content. Insulin secretory function ex vivo was also impaired, which might be related to organelle dysfunction associated with autophagy deficiency. As a result, Ξ²-cell-specific Atg7-null mice showed hypoinsulinemia and hyperglycemia. However, diabetes never developed in those mice. Obesity and/or lipid are physiological ER stresses that can precipitate Ξ²-cell dysfunction. Our recent studies showed that Ξ²-cell-specific Atg7-null mice, when bred with ob/ob mice, indeed become diabetic. Thus, autophagy deficiency in Ξ²-cells could be a precipitating factor in the progression from obesity to diabetes due to inappropriate response to obesity-induced ER stress

    SHORT syndrome due to a novel de novo mutation in PRKCE (Protein Kinase CΙ›) impairing TORC2-dependent AKT activation.

    Get PDF
    SHORT syndrome is a rare, recognizable syndrome resulting from heterozygous mutations in PIK3R1 encoding a regulatory subunit of phosphoinositide-3-kinase (PI3K). The condition is characterized by short stature, intrauterine growth restriction, lipoatrophy and a facial gestalt involving a triangular face, deep set eyes, low hanging columella and small chin. PIK3R1 mutations in SHORT syndrome result in reduced signaling through the PI3K-AKT-mTOR pathway. We performed whole exome sequencing for an individual with clinical features of SHORT syndrome but negative for PIK3R1 mutation and her parents. A rare de novo variant in PRKCE was identified. The gene encodes PKCΞ΅ and, as such, the AKT-mTOR pathway function was assessed using phospho-specific antibodies with patient lymphoblasts and following ectopic expression of the mutant in HEK293 cells. Kinase analysis showed that the variant resulted in a partial loss-of-function. Whilst interaction with PDK1 and the mTORC2 complex component SIN1 was preserved in the mutant PKCΞ΅, it bound to SIN1 with a higher affinity than wild-type PKCΞ΅ and the dynamics of mTORC2-dependent priming of mutant PKCΞ΅ was altered. Further, mutant PKCΞ΅ caused impaired mTORC2-dependent pAKT-S473 following rapamycin treatment. Reduced pFOXO1-S256 and pS6-S240/244 levels were also observed in the patient LCLs. To date, mutations in PIK3R1 causing impaired PI3K-dependent AKT activation are the only known cause of SHORT syndrome. We identify a SHORT syndrome child with a novel partial loss-of-function defect in PKCΞ΅. This variant causes impaired AKT activation via compromised mTORC2 complex function

    PCAF interacts with XBP-1S and mediates XBP-1S-dependent transcription

    Get PDF
    X-box binding protein 1 (XBP-1) is a key regulator required for cellular unfolded protein response (UPR) and plasma cell differentiation. In addition, involvement of XBP-1 in host cell–virus interaction and transcriptional regulation of viruses, such as human T-lymphotropic virus type 1 (HTLV-1), has been revealed recently. Two XBP-1 isoforms, XBP-1U and XBP-1S, which share an identical N-terminal domain, are present in cells. XBP-1S is a transcription activator while XBP-1U is the inactive isoform. Although the transactivation domain of XBP-1S has been identified within the XBP-1S-specific C-terminus, molecular mechanism of the transcriptional activation by XBP-1S still remains unknown. Here we report the interaction between p300/CBP-associated factor (PCAF) and XBP-1S through the C-terminal domain of XBP-1S. No binding between XBP-1U and PCAF is detected. In a cell-based reporter assay, overexpression of PCAF further stimulates the XBP-1S-mediated cellular and HTLV-1 transcription while knockdown of PCAF exhibits the opposite effect. Expression of endogenous XBP-1S cellular target genes, such as BiP and CHOP, is significantly inhibited when PCAF is knocked down. Furthermore, PCAF is recruited to the promoters of XBP-1S target genes in vivo, in a XBP-1S-dependent manner. Collectively, our results demonstrate that PCAF mediates the XBP-1S-dependent transcription through the interaction with XBP-1S

    Timing Is Critical for Effective Glucocorticoid Receptor Mediated Repression of the cAMP-Induced CRH Gene

    Get PDF
    Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR) expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH) mRNA expression: cyclic AMP (cAMP) and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing β€˜positive’ response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids

    Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFΞ², and Wnt/Ξ²-catenin Signaling in Adrenocortical Carcinoma Cells

    Get PDF
    The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) Ξ² and Wnt/Ξ²-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma

    Differing Endoplasmic Reticulum Stress Response to Excess Lipogenesis versus Lipid Oversupply in Relation to Hepatic Steatosis and Insulin Resistance

    Get PDF
    Mitochondrial dysfunction and endoplasmic reticulum (ER) stress have been implicated in hepatic steatosis and insulin resistance. The present study investigated their roles in the development of hepatic steatosis and insulin resistance during de novo lipogenesis (DNL) compared to extrahepatic lipid oversupply. Male C57BL/6J mice were fed either a high fructose (HFru) or high fat (HFat) diet to induce DNL or lipid oversupply in/to the liver. Both HFru and HFat feeding increased hepatic triglyceride within 3 days (by 3.5 and 2.4 fold) and the steatosis remained persistent from 1 week onwards (p<0.01 vs Con). Glucose intolerance (iAUC increased by ∼60%) and blunted insulin-stimulated hepatic Akt and GSK3Ξ² phosphorylation (∼40–60%) were found in both feeding conditions (p<0.01 vs Con, assessed after 1 week). No impairment of mitochondrial function was found (oxidation capacity, expression of PGC1Ξ±, CPT1, respiratory complexes, enzymatic activity of citrate synthase & Ξ²-HAD). As expected, DNL was increased (∼60%) in HFru-fed mice and decreased (32%) in HFat-fed mice (all p<0.05). Interestingly, associated with the upregulated lipogenic enzymes (ACC, FAS and SCD1), two (PERK/eIF2Ξ± and IRE1/XBP1) of three ER stress pathways were significantly activated in HFru-fed mice. However, no significant ER stress was observed in HFat-fed mice during the development of hepatic steatosis. Our findings indicate that HFru and HFat diets can result in hepatic steatosis and insulin resistance without obvious mitochondrial defects via different lipid metabolic pathways. The fact that ER stress is apparent only with HFru feeding suggests that ER stress is involved in DNL per se rather than resulting from hepatic steatosis or insulin resistance
    • …
    corecore