8 research outputs found

    Screening archaeological bone for palaeogenetic and palaeoproteomic studies.

    Get PDF
    The recovery and analysis of ancient DNA and protein from archaeological bone is time-consuming and expensive to carry out, while it involves the partial or complete destruction of valuable or rare specimens. The fields of palaeogenetic and palaeoproteomic research would benefit greatly from techniques that can assess the molecular quality prior to sampling. To be relevant, such screening methods should be effective, minimally-destructive, and rapid. This study reports results based on spectroscopic (Fourier-transform infrared spectroscopy in attenuated total reflectance [FTIR-ATR]; n = 266), palaeoproteomic (collagen content; n = 226), and palaeogenetic (endogenous DNA content; n = 88) techniques. We establish thresholds for three different FTIR indices, a) the infrared splitting factor [IRSF] that assesses relative changes in bioapatite crystals' size and homogeneity; b) the carbonate-to-phosphate [C/P] ratio as a relative measure of carbonate content in bioapatite crystals; and c) the amide-to-phosphate ratio [Am/P] for assessing the relative organic content preserved in bone. These thresholds are both extremely reliable and easy to apply for the successful and rapid distinction between well- and poorly-preserved specimens. This is a milestone for choosing appropriate samples prior to genomic and collagen analyses, with important implications for biomolecular archaeology and palaeontology

    The genomic origins of the world’s first farmers

    Get PDF
    The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Early farmers from across Europe directly descended from Neolithic Aegeans

    Get PDF
    Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia

    Biological and substitute parents in Beaker period adult–child graves

    No full text
    Abstract Joint inhumations of adults and children are an intriguing aspect of the shift from collective to single burial rites in third millennium BC Western Eurasia. Here, we revisit two exceptional Beaker period adult–child graves using ancient DNA: Altwies in Luxembourg and Dunstable Downs in Britain. Ancestry modelling and patterns of shared IBD segments between the individuals examined, and contemporary genomes from Central and Northwest Europe, highlight the continental connections of British Beakers. Although simultaneous burials may involve individuals with no social or biological ties, we present evidence that close blood relations played a role in shaping third millennium BC social systems and burial practices, for example a biological mother and her son buried together at Altwies. Extended family, such as a paternal aunt at Dunstable Downs, could also act as ‘substitute parents’ in the grave. Hypotheses are explored to explain such simultaneous inhumations. Whilst intercommunity violence, infectious disease and epidemics may be considered as explanations, they fail to account for both the specific, codified nature of this particular form of inhumation, and its pervasiveness, as evidenced by a representative sample of 131 adult–child graves from 88 sites across Eurasia, all dating to the third and second millennia BC

    Low Prevalence of Lactase Persistence in Bronze Age Europe Indicates Ongoing Strong Selection over the Last 3,000 Years

    No full text
    Lactase persistence (LP), the continued expression of lactase into adulthood, is the most strongly selected single gene trait over the last 10,000 years in multiple human populations. It has been posited that the primary allele causing LP among Eurasians, rs4988235-A [1], only rose to appreciable frequencies during the Bronze and Iron Ages [2, 3], long after humans started consuming milk from domesticated animals. This rapid rise has been attributed to an influx of people from the Pontic-Caspian steppe that began around 5,000 years ago [4, 5]. We investigate the spatiotemporal spread of LP through an analysis of 14 warriors from the Tollense Bronze Age battlefield in northern Germany (similar to 3,200 before present, BP), the oldest large-scale conflict site north of the Alps. Genetic data indicate that these individuals represent a single unstructured Central/Northern European population. We complemented these data with genotypes of 18 individuals from the Bronze Age site Mokrin in Serbia (similar to 4,100 to similar to 3,700 BP) and 37 individuals from Eastern Europe and the Pontic-Caspian Steppe region, predating both Bronze Age sites (similar to 5,980 to similar to 3,980BP). We infer low LP in all three regions, i.e., in northern Germany and South-eastern and Eastern Europe, suggesting that the surge of rs4988235 in Central and Northern Europe was unlikely caused by Steppe expansions. We estimate a selection coefficient of 0.06 and conclude that the selection was ongoing in various parts of Europe over the last 3,000 years

    Low prevalence of lactase persistence in bronze age europe indicates ongoing strong selection over the last 3,000 years

    Get PDF
    Lactase persistence (LP), the continued expression of lactase into adulthood, is the most strongly selected single gene trait over the last 10,000 years in multiple human populations. It has been posited that the primary allele causing LP among Eurasians, rs4988235-A [1], only rose to appreciable frequencies during the Bronze and Iron Ages [2, 3], long after humans started consuming milk from domesticated animals. This rapid rise has been attributed to an influx of people from the Pontic-Caspian steppe that began around 5,000 years ago [4, 5]. We investigate the spatiotemporal spread of LP through an analysis of 14 warriors from the Tollense Bronze Age battlefield in northern Germany (∌3,200 before present, BP), the oldest large-scale conflict site north of the Alps. Genetic data indicate that these individuals represent a single unstructured Central/Northern European population. We complemented these data with genotypes of 18 individuals from the Bronze Age site Mokrin in Serbia (∌4,100 to ∌3,700 BP) and 37 individuals from Eastern Europe and the Pontic- Caspian Steppe region, predating both Bronze Age sites (∌5,980 to ∌3,980 BP). We infer low LP in all three regions, i.e., in northern Germany and South-eastern and Eastern Europe, suggesting that the surge of rs4988235 in Central and Northern Europe was unlikely caused by Steppe expansions. We estimate a selection coefficient of 0.06 and conclude that the selection was ongoing in various parts of Europe over the last 3,000 years

    The genomic history of the Aegean palatial civilizations

    Get PDF
    The Cycladic, the Minoan, and the Helladic (Mycenaean) cultures define the Bronze Age (BA) of Greece. Urbanism, complex social structures, craft and agricultural specialization, and the earliest forms of writing characterize this iconic period. We sequenced six Early to Middle BA whole genomes, along with 11 mitochondrial genomes, sampled from the three BA cultures of the Aegean Sea. The Early BA (EBA) genomes are homogeneous and derive most of their ancestry from Neolithic Aegeans, contrary to earlier hypotheses that the Neolithic-EBA cultural transition was due to massive population turnover. EBA Aegeans were shaped by relatively small-scale migration from East of the Aegean, as evidenced by the Caucasus-related ancestry also detected in Anatolians. In contrast, Middle BA (MBA) individuals of northern Greece differ from EBA populations in showing ∌50% Pontic-Caspian Steppe-related ancestry, dated at ca. 2,600-2,000 BCE. Such gene flow events during the MBA contributed toward shaping present-day Greek genomes.We thank the INCD (https://incd.pt/) for use of their computing infrastructure, which is funded by FCT and FEDER ( 01/SAICT/2016 022153 ).C.P., E.G., A.S., L.W., and J. Burger acknowledge the support of the European Union and the General Secretariat of Research and Innovation-GSRI, Ministry of Development & Investments in Greece, and the Federal Ministry of Education and Research-BMBF in Germany under the Bilateral Cooperation Program Greece – Germany 2017 (project BIOMUSE-0195 ). O.L. and O. Dolgova acknowledge the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, Centro de Excelencia Severo Ochoa, CERCA Programme/Generalitat de Catalunya, Spanish Ministry of Science and Innovation through the Instituto de Salud Carlos III, Generalitat de Catalunya through Departament de Salut and Departament d’Empresa i Coneixement, as well as co-financing with funds from the European Regional Development Fund by the Spanish Ministry of Science and Innovation corresponding to the Programa Operativo FEDER Plurirregional de España (POPE) 2014-2020, and by the Secretaria d’Universitats i Recerca, Departament d’Empresa i Coneixement of the Generalitat de Catalunya corresponding to the Programa Operatiu FEDER de Catalunya 2014-2020. F.C., C.E.G.A., S.N., D.I.C.D., L.A., B.S.d.M., Y.O.A.C., F.M., J.V.M.-M., and A.-S.M. were supported by the Swiss National Science Foundation (SFNS) and a European Research Council (ERC) grant to A.-S.M. M.U., S.T., D.U.-K., and C.P. were co-financed by the EU Social Fund and the Greek national funds research funding program ARISTEIA II ( project-3461 ). C.P., E.G., A.S., L.W., and J. Burger were co-financed by the Greek-German bilateral cooperation program 2017 (General Secreteriat for Research and Innovation, Ministry of Development and Investments, Greece, and Federal Ministry of Education and Research - BMBF, Germany) project BIOMUSE-0195 funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020 ) and co-financed by Greece and the European Union (EU Social Fund and European Regional Development Fund). E.K. was funded by the Greek State Scholarships Foundation (IKY). O. Delaneau is funded by a SNSF (project grant PP00P3_176977 ). V.C.S. was supported by Portuguese Foundation for Science and Technology (FCT-Fundação para a CiĂȘncia e Tecnologia) through funds granted to cE3c ( UIDB/00329/2020 ) and individual grant CEECIND/02391/2017 . O.L. was supported by a RamĂłn y Cajal grant from the Spanish Ministerio de Economia y Competitividad (MEIC) (RYC-2013-14797), a PGC2018-098574-B-I00 (MEIC/FEDER) grant, and the support of Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya ( GRC 2017 SGR 937 ). O. Dolgova was supported by a PGC2018-098574-B-I00 (MEIC/FEDER) grant. J.D.J. was funded by National Institutes of Health grants R01GM135899 and R35GM13938

    Early farmers from across Europe directly descended from Neolithic Aegeans

    No full text
    Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia
    corecore