62 research outputs found

    The Mass-Radius(-Rotation?) Relation for Low-Mass Stars

    Get PDF
    The fundamental properties of low-mass stars are not as well understood as those of their more massive counterparts. The best method for constraining these properties, especially masses and radii, is to study eclipsing binary systems, but only a small number of late-type (M0 or later) systems have been identified and well-characterized to date. We present the discovery and characterization of six new M dwarf eclipsing binary systems. The twelve stars in these eclipsing systems have masses spanning 0.38-0.59 Msun and orbital periods of 0.6--1.7 days, with typical uncertainties of ~0.3% in mass and 0.5--2.0% in radius. Combined with six known systems with high-precision measurements, our results reveal an intriguing trend in the low-mass regime. For stars with M=0.35-0.80 Msun, components in short-period binary systems (P<1 day; 12 stars) have radii which are inflated by up to 10% (mean=4.8+/-1.0%) with respect to evolutionary models for low-mass main-sequence stars, whereas components in longer-period systems (>1.5 days; 12 stars) tend to have smaller radii (mean=1.7+/-0.7%). This trend supports the hypothesis that short-period systems are inflated by the influence of the close companion, most likely because they are tidally locked into very high rotation speeds that enhance activity and inhibit convection. In summary, very close binary systems are not representative of typical M dwarfs, but our results for longer-period systems indicate that the evolutionary models are broadly valid in the M~0.35-0.80 Msun regime.Comment: Accepted to ApJ; 21 pages, 10 figures, 8 tables in emulateapj format. The full contents of Table 4 are included in the submission as tab4.tx

    Kepler-47: A Transiting Circumbinary Multi-Planet System

    Get PDF
    We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of the Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, eighteen transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone", where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.Comment: To appear on Science Express August 28, 11 pages, 3 figures, one table (main text), 56 pages, 28 figures, 10 table

    Transiting circumbinary planets Kepler-34 b and Kepler-35 b

    Get PDF
    Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated the existence of a ‘circumbinary planet’ orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun’s mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million

    The Updated BaSTI Stellar Evolution Models and Isochrones: I. Solar Scaled Calculations

    Get PDF
    We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar scaled heavy element distribution. The main input physics changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 Msun, 22 initial chemical compositions between [Fe/H]=-3.20 and +0.45, with helium to metal enrichment ratio dY /dZ=1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, take consistently into account the pre-main sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations, to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties and isochrones are made available through a dedicated Web site
    corecore