10 research outputs found

    Escape Distance in Ground-Nesting Birds Differs with Individual Level of Camouflage.

    Get PDF
    Camouflage is one of the most widespread antipredator strategies in the animal kingdom, yet no animal can match its background perfectly in a complex environment. Therefore, selection should favor individuals that use information on how effective their camouflage is in their immediate habitat when responding to an approaching threat. In a field study of African ground-nesting birds (plovers, coursers, and nightjars), we tested the hypothesis that individuals adaptively modulate their escape behavior in relation to their degree of background matching. We used digital imaging and models of predator vision to quantify differences in color, luminance, and pattern between eggs and their background, as well as the plumage of incubating adult nightjars. We found that plovers and coursers showed greater escape distances when their eggs were a poorer pattern match to the background. Nightjars sit on their eggs until a potential threat is nearby, and, correspondingly, they showed greater escape distances when the pattern and color match of the incubating adult's plumage-rather than its eggs-was a poorer match to the background. Finally, escape distances were shorter in the middle of the day, suggesting that escape behavior is mediated by both camouflage and thermoregulation.In Zambia we thank the Bruce-Miller, Duckett and Nicolle families, Collins Moya and numerous other nest-finding assistants and land-owners, Lackson Chama, and the Zambia Wildlife Authority. We also thank Tony Fulford and are grateful for the helpful comments provided by Tim Caro, Innes Cuthill, Daniel Osorio, and two anonymous referees. J.T., J.W-A. and M.S. were funded by a Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/J018309/1 to M.S., and a BBSRC David Phillips Research Fellowship (BB/G022887/1) to M.S., and C.N.S was funded by a Royal Society Dorothy Hodgkin Fellowship, a BBSRC David Phillips Fellowship (BB/J014109/1) and the DST-NRF Centre of Excellence at the Percy FitzPatrick Institute.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by University of Chicago Press

    Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain

    Get PDF
    The nature of contacts between hosts can be important in facilitating or impeding the spread of pathogens within a population. Networks constructed from contacts between hosts allow examination of how individual variation might influence the spread of infections. Studying the contact networks of livestock species managed under different conditions can additionally provide insight into their influence on these contact structures. We collected high-resolution proximity and GPS location data from nine groups of domestic cattle (mean group size = 85) in seven dairy herds employing a range of grazing and housing regimes. Networks were constructed from cattle contacts (defined by proximity) aggregated by different temporal windows (2 h, 24 h, and approximately 1 week) and by location within the farm. Networks of contacts aggregated over the whole study were highly saturated but dividing contacts by space and time revealed substantial variation in cattle interactions. Cows showed statistically significant variation in the frequency of their contacts and in the number of cows with which they were in contact. When cows were in buildings, compared to being on pasture, contact durations were longer and cows contacted more other cows. A small number of cows showed evidence of consistent relationships but the majority of cattle did not. In one group where management allowed free access to all farm areas, cows showed asynchronous space use and, while at pasture, contacted fewer other cows and showed substantially greater between-individual variation in contacts than other groups. We highlight the degree to which variations in management (e.g. grazing access, milking routine) substantially alter cattle contact patterns, with potentially major implications for infection transmission and social interactions. In particular, where individual cows have free choice of their environment, the resulting contact networks may have a less-risky structure that could reduce the likelihood of direct transmission of infections

    Assessing spatiotemporal variability in SARS-CoV-2 infection risk for hospital workers using routinely-collected data.

    No full text
    The COVID-19 pandemic has emphasised the need to rapidly assess infection risks for healthcare workers within the hospital environment. Using data from the first year of the pandemic, we investigated whether an individual's COVID-19 test result was associated with behavioural markers derived from routinely collected hospital data two weeks prior to a test. The temporal and spatial context of behaviours were important, with the highest risks of infection during the first wave, for staff in contact with a greater number of patients and those with greater levels of activity on floors handling the majority of COVID-19 patients. Infection risks were higher for BAME staff and individuals working more shifts. Night shifts presented higher risks of infection between waves of COVID-19 patients. Our results demonstrate the epidemiological relevance of deriving markers of staff behaviour from electronic records, which extend beyond COVID-19 with applications for other communicable diseases and in supporting pandemic preparedness

    Data from: High-resolution contact networks of free-ranging domestic dogs Canis familiaris and implications for transmission of infection

    No full text
    Contact patterns strongly influence the dynamics of disease transmission in both human and non-human animal populations. Domestic dogs Canis familiaris are a social species and are a reservoir for several zoonotic infections, yet few studies have empirically determined contact patterns within dog populations. Using high-resolution proximity logging technology, we characterised the contact networks of free-ranging domestic dogs from two settlements (n = 108 dogs, covering >80% of the population in each settlement) in rural Chad. We used these data to simulate the transmission of an infection comparable to rabies and investigated the effects of including observed contact heterogeneities on epidemic outcomes. We found that dog contact networks displayed considerable heterogeneity, particularly in the duration of contacts and that the network had communities that were highly correlated with household membership. Simulations using observed contact networks had smaller epidemic sizes than those that assumed random mixing, demonstrating the unsuitability of homogenous mixing models in predicting epidemic outcomes. When contact heterogeneities were included in simulations, the network position of the individual initially infected had an important effect on epidemic outcomes. The risk of an epidemic occurring was best predicted by the initially infected individual’s ranked degree, while epidemic size was best predicted by the individual’s ranked eigenvector centrality. For dogs in one settlement, we found that ranked eigenvector centrality was correlated with range size. Our results demonstrate that observed heterogeneities in contacts are important for the prediction of epidemiological outcomes in free-ranging domestic dogs. We show that individuals presenting a higher risk for disease transmission can be identified by their network position and provide evidence that observable traits hold potential for informing targeted disease management strategies

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020

    Elliptic Flow in A

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore