1,072 research outputs found

    Commentary: Are National Parks Still Relevant?

    Full text link
    On the occasion of the National Parks centennial comes an irreverent question: Are the parks still relevant? Famously christened as America\u27s best idea by writer Wallace Stegner and reaffirmed in Ken Burns\u27 2009 PBS documentary, it seems brazen, if not blasphemous, to pose the question. [excerpt

    How the Federal Government Went From Realtor to Landlord in the American West

    Full text link
    Disputes over public land rights have a long history in the United States. But the past 18 months have seen a growing number of confrontations over Western federal lands, culminating in the current standoff at the Malheur National Wildlife Refuge in Oregon. [excerpt

    Growing Pains or Opportunities? A Customer Survey of Three Farmers\u27 Markets in One Rural Community

    Get PDF
    The continued growth of farmers\u27 markets is presenting new challenges to Extension. As the number of markets expands, how can Extension help those in the same community work together for mutual benefit? The study reported here examined similarities and differences among customers attending three different farmers\u27 markets within a single locality in Gettysburg, Pennsylvania. Based on 370 customer surveys, study results underscore the diversity of markets operating within the same community and provide insights into ways Extension might assist markets to work together to expand their shared customer base, increase revenues, and better serve local residents

    Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Get PDF
    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language

    Balancing Prediction and Sensory Input in Speech Comprehension: The Spatiotemporal Dynamics of Word Recognition in Context.

    Get PDF
    Spoken word recognition in context is remarkably fast and accurate, with recognition times of ∼200 ms, typically well before the end of the word. The neurocomputational mechanisms underlying these contextual effects are still poorly understood. This study combines source-localized electroencephalographic and magnetoencephalographic (EMEG) measures of real-time brain activity with multivariate representational similarity analysis to determine directly the timing and computational content of the processes evoked as spoken words are heard in context, and to evaluate the respective roles of bottom-up and predictive processing mechanisms in the integration of sensory and contextual constraints. Male and female human participants heard simple (modifier-noun) English phrases that varied in the degree of semantic constraint that the modifier (W1) exerted on the noun (W2), as in pairs, such as "yellow banana." We used gating tasks to generate estimates of the probabilistic predictions generated by these constraints as well as measures of their interaction with the bottom-up perceptual input for W2. Representation similarity analysis models of these measures were tested against electroencephalographic and magnetoencephalographic brain data across a bilateral fronto-temporo-parietal language network. Consistent with probabilistic predictive processing accounts, we found early activation of semantic constraints in frontal cortex (LBA45) as W1 was heard. The effects of these constraints (at 100 ms after W2 onset in left middle temporal gyrus and at 140 ms in left Heschl's gyrus) were only detectable, however, after the initial phonemes of W2 had been heard. Within an overall predictive processing framework, bottom-up sensory inputs are still required to achieve early and robust spoken word recognition in context.SIGNIFICANCE STATEMENT Human listeners recognize spoken words in natural speech contexts with remarkable speed and accuracy, often identifying a word well before all of it has been heard. In this study, we investigate the brain systems that support this important capacity, using neuroimaging techniques that can track real-time brain activity during speech comprehension. This makes it possible to locate the brain areas that generate predictions about upcoming words and to show how these expectations are integrated with the evidence provided by the speech being heard. We use the timing and localization of these effects to provide the most specific account to date of how the brain achieves an optimal balance between prediction and sensory input in the interpretation of spoken language

    Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy.

    Get PDF
    Although widespread neural atrophy is an inevitable consequence of normal aging, not all cognitive abilities decline as we age. For example, spoken language comprehension tends to be preserved, despite atrophy in neural regions involved in language function. Here, we combined measures of behavior, functional activation, and gray matter (GM) change in a younger (19-34 years) and older group (49-86 years) of participants to identify the mechanisms leading to preserved language comprehension across the adult life span. We focussed primarily on syntactic functions because these are strongly left lateralized, providing the potential for contralateral recruitment. In an functional magnetic resonance imaging study, we used a word-monitoring task to minimize working memory demands, manipulating the availability of semantics and syntax to ask whether syntax is preserved in aging because of the functional recruitment of other brain regions, which successfully compensate for neural atrophy. Performance in the older group was preserved despite GM loss. This preservation was related to increased activity in right hemisphere frontotemporal regions, which was associated with age-related atrophy in the left hemisphere frontotemporal network activated in the young. We argue that preserved syntactic processing across the life span is due to the shift from a primarily left hemisphere frontotemporal system to a bilateral functional language network

    Accumulation dynamics of transcripts and proteins of cold-responsive genes in fragaria vesca genotypes of differing cold tolerance

    Get PDF
    Identifying and characterizing cold responsive genes in Fragaria vesca associated with or responsible for low temperature tolerance is a vital part of strawberry cultivar development. In this study we have investigated the transcript levels of eight genes, two dehydrin genes, three putative ABA-regulated genes, two cold–inducible CBF genes and the alcohol dehydrogenase gene, extracted from leaf and crown tissues of three F. vesca genotypes that vary in cold tolerance. Transcript levels of the CBF/DREB1 transcription factor FvCBF1E exhibited stronger cold up-regulation in comparison to FvCBF1B.1 in all genotypes. Transcripts of FvADH were highly up-regulated in both crown and leaf tissues from all three genotypes. In the ‘ALTA’ genotype, FvADH transcripts were significantly higher in leaf than crown tissues and more than 10 to 20-fold greater than in the less cold-tolerant ‘NCGR1363’ and ‘FDP817’ genotypes. FvGEM, containing the conserved ABRE promoter element, transcript was found to be cold-regulated in crowns. Direct comparison of the kinetics of transcript and protein accumulation of dehydrins was scrutinized. In all genotypes and organs, the changes of XERO2 transcript levels generally preceded protein changes, while levels of COR47 protein accumulation preceded the increases in COR47 RNA in ‘ALTA’ crowns.publishedVersio
    corecore