43 research outputs found

    My Television and I

    Get PDF

    \u3ci\u3eTreasures of the Temple Silence\u3c/i\u3e

    Get PDF
    In the Temple of Silence is a pool of water that some men call the Pool of Vision and others call the Pool of Judgment

    Aβ5−xPeptides: N‑Terminal Truncation Yields Tunable Cu(II)Complexes

    Get PDF
    The Aβ5−x peptides (x = 38, 40, 42) are minor Aβ species in normal brains but elevated upon the application of inhibitors of Aβ processing enzymes. They are interesting from the point of view of coordination chemistry for the presence of an Arg-His metal binding sequence at their N-terminus capable of forming a 3-nitrogen (3N) three-coordinate chelate system. Similar sequences in other bioactive peptides were shown to bind Cu(II) ions in biological systems. Therefore, we investigated Cu(II) complex formation and reactivity of a series of truncated Aβ5−x peptide models comprising the metal binding site: Aβ5−9, Aβ5−12, Aβ5−12Y10F, and Aβ5−16. Using CD and UV−vis spectroscopies and potentiometry, we found that all peptides coordinated the Cu(II) ion with substantial affinities higher than 3 × 1012 M−1 at pH 7.4 for Aβ5−9 and Aβ5−12. This affinity was elevated 3-fold in Aβ5−16 by the formation of the internal macrochelate with the fourth coordination site occupied by the imidazole nitrogen of the His13 or His14 residue. A much higher boost of affinity could be achieved in Aβ5−9 and Aβ5−12 by adding appropriate amounts of the external imidazole ligand. The 3N Cu-Aβ5−x complexes could be irreversibly reduced to Cu(I) at about −0.6 V vs Ag/AgCl and oxidized to Cu(III) at about 1.2 V vs Ag/AgCl. The internal or external imidazole coordination to the 3N core resulted in a slight destabilization of the Cu(I) state and stabilization of the Cu(III) state. Taken together these results indicate that Aβ5−x peptides, which bind Cu(II) ions much more strongly than Aβ1−x peptides and only slightly weaker than Aβ4−x peptides could interfere with Cu(II) handling by these peptides, adding to copper dyshomeostasis in Alzheimer brains

    Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine

    Get PDF
    UID/QUI/50006/2019The designed "ATCUN'' motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-beta toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.publishersversionpublishe

    Wormwood Review Project

    No full text

    Wormwood Review Project

    No full text

    Something About the Sidewalks

    No full text

    Wormwood Review Project

    No full text

    Wormwood Review Project

    No full text
    corecore