1,615 research outputs found
Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1
Because of their inherently high flux allowing the detection of clear
signals, black hole X-ray binaries are interesting candidates for polarization
studies, even if no polarization signals have been observed from them before.
Such measurements would provide further detailed insight into these sources'
emission mechanisms. We measured the polarization of the gamma-ray emission
from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope.
Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV
data are consistent with emission dominated by Compton scattering on thermal
electrons and are weakly polarized. The second spectral component seen in the
400keV-2MeV band is by contrast strongly polarized, revealing that the MeV
emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011,
available on Science Express Web site (March 24th edition
The Effects of Iconic Gestures and Babble Language on Word Intelligibility in Sentence Context
Purpose:This study investigated to what extent iconic co-speech gestures helpword intelligibility in sentence context in two different linguistic maskers (nativevs. foreign). It was hypothesized that sentence recognition improves with thepresence of iconic co-speech gestures and with foreign compared to nativebabble.Method:Thirty-two native Dutch participants performed a Dutch word recogni-tion task in context in which they were presented with videos in which anactress uttered short Dutch sentences (e.g.,Ze begint te openen,“She starts toopen”). Participants were presented with a total of six audiovisual conditions: nobackground noise (i.e., clear condition) without gesture, no background noise withgesture, French babble without gesture, French babble with gesture, Dutch bab-ble without gesture, and Dutch babble with gesture; and they were asked to typedown what was said by the Dutch actress. The accurate identification of theaction verbs at the end of the target sentences was measured.Results:The results demonstrated that performance on the task was better inthe gesture compared to the nongesture conditions (i.e., gesture enhancementeffect). In addition, performance was better in French babble than in Dutchbabble.Conclusions:Listeners benefit from iconic co-speech gestures during commu-nication and from foreign background speech compared to native. Theseinsights into multimodal communication may be valuable to everyone whoengages in multimodal communication and especially to a public who oftenworks in public places where competing speech is present in the background
Variability in high-mass X-ray binaries
Strongly magnetized, accreting neutron stars show periodic and aperiodic
variability over a wide range of time scales. By obtaining spectral and timing
information on these different time scales, we can have a closer look into the
physics of accretion close to the neutron star and the properties of the
accreted material. One of the most prominent time scales is the strong
pulsation, i.e., the rotation period of the neutron star itself. Over one
rotation, our view of the accretion column and the X-ray producing region
changes significantly. This allows us to sample different physical conditions
within the column but at the same time requires that we have
viewing-angle-resolved models to properly describe them. In wind-fed high-mass
X-ray binaries, the main source of aperiodic variability is the clumpy stellar
wind, which leads to changes in the accretion rate (i.e., luminosity) as well
as absorption column. This variability allows us to study the behavior of the
accretion column as a function of luminosity, as well as to investigate the
structure and physical properties of the wind, which we can compare to winds in
isolated stars.Comment: 6 pages, 4 figures, accepted for publication in Astronomische
Nachrichten (proceedings of the XMM-Newton Workshop 2019
Spectral state dependence of the 0.4-2 MeV polarized emission in Cygnus X-1 seen with INTEGRAL/IBIS, and links with the AMI radio data
Polarization of the >~400 keV hard tail of the microquasar Cygnus X-1 has
been independently reported by INTEGRAL/IBIS, and INTEGRAL/SPI and interpreted
as emission from a compact jet. These conclusions were, however, based on the
accumulation of all INTEGRAL data regardless of the spectral state. We utilize
additional INTEGRAL exposure accumulated until December 2012, and include the
AMI/Ryle (15 GHz) radio data in our study. We separate the observations into
hard, soft, and intermediate/transitional states and detect radio emission from
a compact jet in hard and intermediate states, but not in the soft. The 10-400
keV INTEGRAL (JEM-X and IBIS) state resolved spectra are well modeled with
thermal Comptonization and reflection components. We detect a hard tail in the
0.4-2 MeV range for the hard state only. We extract the state dependent
polarigrams of Cyg X-1, which all are compatible to no or undetectable level of
polarization except in 400-2000 keV range in the hard state where the
polarization fraction is 7532 % and the polarization angle 40.0 +-14 deg.
An upper limit on the 0.4-2 MeV soft state polarization fraction is 70%. Due to
the short exposure, we obtain no meaningful constraint for the intermediate
state. The likely detection of a >400 keV polarized tail in the hard state,
together with the simultaneous presence of a radio jet, reinforce the notion of
a compact jet origin of the 400 keV emission.Comment: 13 pages, 5 figures, accepted for publication in Ap
A Suzaku X-ray observation of one orbit of the supergiant fast X-ray transient IGR J16479-4514
We report on a 250 ks long X-ray observation of the supergiant fast X-ray
transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. About
80% of the short orbital period (Porb=3.32 days) was covered as continuously as
possible for the first time. The source light curve displays variability of
more than two orders of magnitude, starting with a very low emission state
lasting the first 46 ks (1E-13 erg/cm2/s, 1-10 keV), consistent with being due
to the X-ray eclipse by the supergiant companion. The transition to the
uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source
spends most of the time at a level of (6-7)x10^-12 erg/cm2/s punctuated by two
structured faint flares with a duration of about 10 and 15 ks. Remarkably, the
first faint flare occurs at a similar orbital phase of the bright flares
previously observed in the system. This indicates the presence of a
phase-locked large scale structure in the supergiant wind, driving a higher
accretion rate onto the compact object. The scattered component visible during
the X-ray eclipse allowed us to directly probe the wind density at the orbital
separation, resulting in rho=7E-14 g/cm3. Assuming a spherical geometry for the
supergiant wind, the derived wind density translates into a ratio
Mdot_w/v_terminal = 7E-17 solar masses/km which, assuming terminal velocities
in a large range 500-3000 km/s, implies an accretion luminosity two orders of
magnitude higher than that observed. As a consequence, a mechanism is at work
reducing the mass accretion rate. Different possibilities are discussed.Comment: Accepted for publication in MNRAS. 10 pages, 5 figure
XRBcats: Galactic Low Mass X-ray Binary Catalogue
We present a new catalogue of low-mass X-ray binaries (LMXBs) in the Galaxy.
The catalogue contains source names, coordinates, source types, fluxes,
distances, system parameters, and other characteristic properties of 348 LMXBs,
including LMXBs that were newly discovered or re-classified since the latest
releases of the catalogues by Liu et al. (2007) and Ritter and Kolb (2003). The
aim of this catalogue is to provide a list of all currently known Galactic
objects identified as LMXBs with some basic information on each system
(including X-ray and optical/IR properties where possible). Literature
published before March 2023 has, as far as possible, been taken into account
when compiling this information. References for all reported properties as well
as object finding charts in several energy bands are provided as part of the
catalogue. We plan to update the catalogue regularly, in particular to reflect
new objects discovered in the ongoing large scale surveys such as Gaia and
eROSITA.Comment: 13 pages, 2 figures, submitted to A&A. For auxillary files, see
http://astro.uni-tuebingen.de/~xrbcat
INTEGRAL-RXTE observations of Cygnus X-1
We present first results from contemporaneous observations of Cygnus X-1 with
INTEGRAL and RXTE, made during INTEGRAL's performance verification phase in
2002 November and December. Consistent with earlier results, the 3-250 keV data
are well described by Comptonization spectra from a Compton corona with a
temperature of kT~50-90 keV and an optical depth of tau~1.0-1.3 plus reflection
from a cold or mildly ionized slab with a covering factor of Omega/2pi~0.2-0.3.
A soft excess below 10 keV, interpreted as emission from the accretion disk, is
seen to decrease during the 1.5 months spanned by our observations. Our results
indicate a remarkable consistency among the independently calibrated detectors,
with the remaining issues being mainly related to the flux calibration of
INTEGRAL.Comment: 6 pages, 3 figures. Figs. 2 and 3 are best viewed in color. Accepted
for publication in the INTEGRAL special edition of A&A
Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1 / HDE 226868 system
Binary systems with an accreting compact object are a unique chance to
investigate the strong, clumpy, line-driven winds of early type supergiants by
using the compact object's X-rays to probe the wind structure. We analyze the
two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole
Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course
of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also
shows a large scatter at a given orbital phase, especially at superior
conjunction. The orbital variability is most prominent when the black hole is
in the hard X-ray state. Our data are poorer for the intermediate and soft
state, but show signs for orbital variability of the absorption column in the
intermediate state. We quantitatively compare the data in the hard state to a
toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate
clumping, the model does not describe the observations well. A qualitative
comparison to a simplified simulation of clumpy winds with spherical clumps
shows good agreement in the distribution of the equivalent hydrogen column
density for models with a porosity length on the order of the stellar radius at
inferior conjunction; we conjecture that the deviations between data and model
at superior conjunction could be either due to lack of a focussed wind
component in the model or a more complicated clump structure.Comment: proposed for acceptance in A&A, 11 pages, 11 figures (two in
appendix
- …