92 research outputs found

    Sex Differences in Mortality After Transcatheter Aortic Valve Replacement for Severe Aortic Stenosis

    Get PDF
    ObjectivesThe aim of this study was to examine sex differences in outcome after transcatheter aortic valve replacement (TAVR) with real-world data from 2 large centers in Canada.BackgroundTranscatheter aortic valve replacement is an effective alternative to surgical valve replacement in symptomatic patients with severe aortic stenosis, but the impact of sex on outcomes remains unclear. The PARTNER (Placement of Aortic Transcatheter Valves) 1A trial demonstrated greater benefit of TAVR over surgery in women, but whether this was due to the poorer surgical outcome of women or better TAVR outcome, compared with men, is unknown.MethodsConsecutive patients (n = 641) undergoing TAVR in Vancouver and Quebec City, Canada, were evaluated. Differences in all-cause mortality were examined with Kaplan-Meier estimates, adjusted logistic regression, and proportional hazards models.ResultsWomen comprised 51.3% of the cohort. Balloon-expandable valves were used in 97% of cases, with transapical approach in 51.7 % women and 38.1% men. Women had more major vascular complications (12.4% vs. 5.4%, p = 0.003) and borderline significantly more major/life-threatening bleeds (21.6% vs. 15.8%, p = 0.08). At baseline, women had higher aortic gradients and worse renal function but better ejection fractions. Men had more comorbidities: prior myocardial infarction, prior revascularization, and chronic obstructive pulmonary disease. The adjusted odds ratio for 30-day all-cause mortality favored women, 0.39 (95% confidence interval: 0.19 to 0.80; p = 0.01), and this benefit persisted for 2 years, hazard ratio 0.60 (95% confidence interval: 0.41 to 0.88; p = 0.008).ConclusionsFemale sex is associated with better short- and long-term survival after TAVR. Added to the PARTNER 1A findings, these results suggest TAVR might be the preferred treatment option for elderly women with symptomatic severe aortic stenosis

    Aortic Annulus Diameter Determination by Multidetector Computed Tomography Reproducibility, Applicability, and Implications for Transcatheter Aortic Valve Implantation

    Get PDF
    ObjectivesThis study sought to determine the most reproducible multidetector computed tomography (MDCT) measurements of the aortic annulus and to determine methods to improve the applicability of these measurements for transcatheter aortic valve implantation.BackgroundThe reproducibility and applicability of MDCT annular measurements to guide transcatheter aortic valve implantation remain unclear.MethodsAnnular measurements were performed in 50 patients planed for transcatheter aortic valve implantation in multiple planes: basal ring (short- and long-axis, mean diameter, area-derived diameter), coronal, sagittal, and 3-chamber projections. A theoretical model was developed taking into account the differences between the most reproducible MDCT measurements and transesophageal echocardiography to guide valve size choice.ResultsThe most reproducible measurements were the area-derived diameter and basal ring average diameter (inter-reader intraclass correlation coefficient: 0.87 [95% confidence interval: 0.81 to 0.92] and 0.80 [95% confidence interval: 0.70 to 0.87]; respectively; intrareader >0.90 for all readers). These were generally larger than transesophageal echocardiography diameters (mean difference of 1.5 ± 1.6 mm and 1.1 ± 1.7 mm, respectively). When a strategy of valve-sizing is undertaken using these CT measurements using an echocardiographic sizing scale, a different THV size would be selected in 44% and 40% of cases, respectively. When adjusting the sizing cutoffs to account for the differences in observed diameters, this was reduced to 10% to 12% (p < 0.01 for both, respectively).ConclusionsThe most reproducible MDCT measurements of the annulus are the area-derived diameter and basal ring average diameter, with derived values generally larger than those obtained with echocardiography. If MDCT is used for valve sizing, a strategy incorporating these differences may be important. MDCT using these easily derived measurements may be ideally suited to sizing transcatheter aortic valves as they account for the eccentricity of the aortic annulus, are reproducible, and are noninvasive

    Modulation of the surface proteome through multiple ubiquitylation pathways in African Trypanosomes

    Get PDF
    Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes

    A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

    No full text
    MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, Mlkl(D139V), that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of Mlkl(D139V) homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO). Necroptosis is a regulated form of inflammatory cell death driven by activated MLKL. Here, the authors identify a mutation in the brace region that confers constitutive activation, leading to lethal inflammation in homozygous mutant mice and providing insight into human mutations in this region

    Target 2035-update on the quest for a probe for every protein

    Get PDF
    Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation &lt;92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p&lt;0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p&lt;0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore