88 research outputs found

    Catheter ablation for AF improves global thrombotic profile and enhances fibrinolysis

    Get PDF
    © The Author(s) 2017. This article is an open access publication. The final authenticated version is available online at: https://doi.org/10.1007/s11239-017-1548-3Patients with atrial fibrillation (AF) are at increased risk of thrombotic events despite oral anticoagulation (OAC). Radiofrequency catheter ablation (RFCA) can restore and maintain sinus rhythm (SR) in patients with AF. To assess whether RFCA improves thrombotic status. 80 patients (71% male, 64 ± 12y) with recently diagnosed AF, on OAC and scheduled to undergo RFCA or DC cardioversion (DCCV) were recruited. Thrombotic status was assessed using the point-of-care global thrombosis test (GTT), before, and 4-6 weeks after DCCV and 3 months after RFCA. The GTT first measures the time taken for occlusive thrombus formation (occlusion time, OT), while the second phase of the test measures the time taken to spontaneously dissolve this clot through endogenous thrombolysis (lysis time, LT). 3 months after RFCA, there was a significant reduction in LT (1994s [1560; 2475] vs. 1477s [1015; 1878]) in those who maintained SR, but not in those who reverted to AF. At follow-up, LT was longer in those in AF compared to those in SR (AF 2966s [2038; 3879] vs. SR 1477s [1015; 1878]). RFCA resulted in no change in OT value, irrespective of rhythm outcome. Similarly, there was no change in OT or LT in response to DCCV, irrespective of whether SR was restored. Successful restoration and maintenance of SR following RFCA of AF is associated with improved global thrombotic status with enhanced fibrinolysis. Larger studies are required to confirm these early results and investigate whether improved thrombotic status translates into fewer thromboembolic events.Peer reviewedFinal Published versio

    Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations.

    Get PDF
    Understanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales

    International Society of Sports Nutrition Position Stand: Nutritional recommendations for single-stage ultra-marathon; training and racing

    Get PDF
    Background. In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~60% of energy intake, 5 – 8 gâž±kg−1·d−1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~1.6 g·kg−1·d−1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 gâž±kg−1·d−1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150 - 400 kcalâž±h−1 (carbohydrate, 30 – 50 gâž±h−1; protein, 5 – 10 gâž±h−1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450 – 750 mLâž±h−1 (~150 – 250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., >575 mg·L−1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety

    Electronic, magnetic, and structural properties of L1(0)FePt(x)Pd(1-x) alloys

    No full text
    We present theoretical and experimental results on the electronic, magnetic, and structural properties of L1(0) FePd, FePt, and FePtxPd1-x alloys. These alloys have large magnetizations and magnetocrystalline anisotropies and as such are potentially technologically important for applications as permanent magnets or high-density storage media. Results of first principles electronic structure calculations show that the system is a strong ferromagnet with an almost full majority Fe band, and that magnetization and magnetocrystalline anisotropy remain large over the range of composition. Total energy calculations predict phase separation on the disordered Pd/Pt layer at low temperatures. Experimental studies using energy dispersion x-ray line scans confirm regions that are Pt rich and Pd rich forming at low temperatures. (C) 2002 American Institute of Physics.open112826sciescopu
    • 

    corecore