272 research outputs found

    Intrinsic point defects and volume swelling in ZrSiO4 under irradiation

    Full text link
    The effects of high concentration of point defects in crystalline ZrSiO4 as originated by exposure to radiation, have been simulated using first principles density functional calculations. Structural relaxation and vibrational studies were performed for a catalogue of intrinsic point defects, with different charge states and concentrations. The experimental evidence of a large anisotropic volume swelling in natural and artificially irradiated samples is used to select the subset of defects that give similar lattice swelling for the concentrations studied, namely interstitials of O and Si, and the anti-site Zr(Si), Calculated vibrational spectra for the interstitials show additional evidence for the presence of high concentrations of some of these defects in irradiated zircon.Comment: 9 pages, 7 (color) figure

    Plutonium stabilization in zircon: Effects of self-radiation

    Full text link
    Zircon (ZrSiO4)(ZrSiO4) is the most thoroughly studied of all candidate ceramic phases for the stabilization of plutonium. Self-radiation damage from α-decay of the 239Pu,239Pu, which releases a 5.16 MeV α-particle and a 0.086 MeV 235U235U recoil nucleus, can significantly affect the structure and properties of zircon. Recent computer simulations using energy minimization techniques indicate that the lowest energy configuration occurs for a defect cluster composed of two near-neighbor Pu3+Pu3+ substitutions on Zr4+Zr4+ sites and a neighboring charge-compensating oxygen vacancy. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87571/2/18_1.pd

    Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction

    Get PDF
    Severe changes in ocean redox, nutrient cycling, and marine productivity accompanied most Phanerozoic mass extinctions. However, evidence for marine photic zone euxinia (PZE) as a globally important extinction mechanism for the end-Triassic extinction (ETE) is currently lacking. Fossil molecular (biomarker) and nitrogen isotopic records from a sedimentary sequence in western Canada provide the first conclusive evidence of PZE and disrupted biogeochemistry in neritic waters of the Panthalassic Ocean during the end Triassic. Increasing water-column stratification and deoxygenation across the ETE led to PZE in the Early Jurassic, paralleled by a perturbed nitrogen cycle and ecological turnovers among noncalcifying groups, including eukaryotic algae and prokaryotic plankton. If such conditions developed widely in the Panthalassic Ocean, PZE might have been a potent mechanism for the ETE.National Science Foundation (U.S.) (Grant EAR-1147402)Exobiology Program (U.S.) (Grants NNX09AM88G and NNA08CN84A)American Association of Petroleum Geologists (Grant-In-Aid)Mary-Hill and Bevan M. French Fund for Impact Geolog

    Precharacterization Report for Instrumented Fuel Assembly (IFA)-527

    Get PDF
    This report is a resource document covering the rationale, design, fabrication, and preirradiation characterization of instrumented fuel assembly (IFA)-527. This assembly is being irradiated in the Halden Boiling Water Reactor (HBWR) in Norway as part of the Experimental Support and Development of Single-Rod Fuel Codes Program conducted by Pacific Northwest laboratory (PNL) and sponsored by the Fuel Behavior Research Branch of the U.S. Nuclear Regulatory Commission (NRC). Data from this assembly will be used to better understand light water reactor (LWR) fuel behavior under normal operating conditions

    Widespread presence of direction-reversing neurons in the mouse visual system

    Get PDF
    Direction selectivity, the preference of motion in one direction over the opposite, is a fundamental property of visual neurons across species. We find that a substantial proportion of direction selective neurons in the mouse visual system reverse their preferred direction of motion in response to drifting gratings at different spatiotemporal parameters. A spatiotemporally asymmetric filter model recapitulates our experimental observations

    Widespread presence of direction-reversing neurons in the mouse visual system

    Get PDF
    Direction selectivity, the preference of motion in one direction over the opposite, is a fundamental property of visual neurons across species. We find that a substantial proportion of direction selective neurons in the mouse visual system reverse their preferred direction of motion in response to drifting gratings at different spatiotemporal parameters. A spatiotemporally asymmetric filter model recapitulates our experimental observations

    The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars

    Get PDF
    The deuterium to hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity’s Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550°C and 950°C from samples of Hesperian era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in Standard Mean Ocean Water (SMOW). The D/H ratio in this ~3 billion year old mudstone that is half that of the present martian atmosphere but substantially higher than that expected in very early Mars indicates an extended history of hydrogen escape and desiccation of the planet

    Hepatitis C Virus (HCV) NS3 Sequence Diversity and Antiviral Resistance-Associated Variant Frequency in HCV/HIV Coinfection

    Get PDF
    ABSTRACT HIV coinfection accelerates disease progression in chronic hepatitis C and reduces sustained antiviral responses (SVR) to interferon-based therapy. New direct-acting antivirals (DAAs) promise higher SVR rates, but the selection of preexisting resistance-associated variants (RAVs) may lead to virologic breakthrough or relapse. Thus, pretreatment frequencies of RAVs are likely determinants of treatment outcome but typically are below levels at which the viral sequence can be accurately resolved. Moreover, it is not known how HIV coinfection influences RAV frequency. We adopted an accurate high-throughput sequencing strategy to compare nucleotide diversity in HCV NS3 protease-coding sequences in 20 monoinfected and 20 coinfected subjects with well-controlled HIV infection. Differences in mean pairwise nucleotide diversity (Ï€), Tajima's D statistic, and Shannon entropy index suggested that the genetic diversity of HCV is reduced in coinfection. Among coinfected subjects, diversity correlated positively with increases in CD4 + T cells on antiretroviral therapy, suggesting T cell responses are important determinants of diversity. At a median sequencing depth of 0.084%, preexisting RAVs were readily identified. Q80K, which negatively impacts clinical responses to simeprevir, was encoded by more than 99% of viral RNAs in 17 of the 40 subjects. RAVs other than Q80K were identified in 39 of 40 subjects, mostly at frequencies near 0.1%. RAV frequency did not differ significantly between monoinfected and coinfected subjects. We conclude that HCV genetic diversity is reduced in patients with well-controlled HIV infection, likely reflecting impaired T cell immunity. However, RAV frequency is not increased and should not adversely influence the outcome of DAA therapy

    A Normalization Model of Attentional Modulation of Single Unit Responses

    Get PDF
    Although many studies have shown that attention to a stimulus can enhance the responses of individual cortical sensory neurons, little is known about how attention accomplishes this change in response. Here, we propose that attention-based changes in neuronal responses depend on the same response normalization mechanism that adjusts sensory responses whenever multiple stimuli are present. We have implemented a model of attention that assumes that attention works only through this normalization mechanism, and show that it can replicate key effects of attention. The model successfully explains how attention changes the gain of responses to individual stimuli and also why modulation by attention is more robust and not a simple gain change when multiple stimuli are present inside a neuron's receptive field. Additionally, the model accounts well for physiological data that measure separately attentional modulation and sensory normalization of the responses of individual neurons in area MT in visual cortex. The proposal that attention works through a normalization mechanism sheds new light a broad range of observations on how attention alters the representation of sensory information in cerebral cortex

    Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: targetable nanocomplexes for in vivo nucleic acid delivery

    Get PDF
    One of the greatest challenges for the development of genetic therapies is the efficient targeted delivery of therapeutic nucleic acids. Towards this goal, we have introduced a new engineering initiative in self-assembly of biologically safe and stable nanovesicle complexes (∼90-140 nm) derived from giant unilamellar vesicle (GUV) precursors and comprising plasmid DNA or siRNA and targeting peptide ligands. The biological performance of the engineered nanovesicle complexes were studied both in vitro and in vivo and compared with cationic liposome-based lipopolyplexes. Compared with cationic lipopolyplexes, nanovesicle complexes did not show advantages in transfection and cell uptake. However, nanovesicle complexes neither displayed significant cytotoxicity nor activated the complement system, which are advantageous for intravenous injection and tumour therapy. On intravenous administration into a neuroblastoma xenograft mouse model, nanovesicle complexes were found to distribute throughout the tumour interstitium, thus providing an alternative safer approach for future development of tumour-specific therapeutic nucleic acid interventions. On oropharyngeal instillation, nanovesicle complexes displayed better transfection efficiency than cationic lipopolyplexes. The technological advantages of nanovesicle complexes, originating from GUVs, over traditional cationic liposome-based lipopolyplexes are discussed. STATEMENT OF SIGNIFICANCE: The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. Giant unilamellar lipid vesicles (GUVs) have been used mainly as cell and tissue mimics and are instrumental in studying lipid bilayers and interactions. Here, the GUVs have been modified into smaller nanovesicles. We have then developed novel nanovesicle complexes comprising self-assembling mixtures of the nanovesicles, plasmid DNA or siRNA, and targeting peptide ligands. Their biophysical properties were studied and their transfection efficiency was investigated. They transfected cells efficiently without any associated cytotoxicity and with targeting specificity, and in vivo they resulted in very high and tumour-specific uptake and in addition, efficiently transfected the lung. The peptide-targeted nanovesicle complexes allow for the specific targeted enhancement of nucleic acid delivery with improved biosafety over liposomal formulations and represent a promising tool to improve our arsenal of safe, non-viral vectors to deliver therapeutic cargos in a variety of disorders
    • …
    corecore