1,278 research outputs found
Carlos Drummond de Andrade, Jorge de Sena e Prêmios Internacionais: Uma Correspondência Pessoal
Tradução do inglês por Lúcia Regina de Sá e Benito Martinez Rodrigue
Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process
The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG
Affinity chromatography in dynamic combinatorial libraries: one-pot amplification and isolation of a strongly binding receptor
We report the one-pot amplification and isolation of a nanomolar receptor in a multibuilding block aqueous dynamic combinatorial library using a polymer-bound template. By appropriate choice of a poly(N,N-dimethylacrylamide)-based support, unselective ion-exchange type behaviour between the oppositely charged cationic guest and polyanionic hosts was overcome, such that the selective molecular recognition arising in aqueous solution reactions is manifest also in the analogous templated solid phase DCL syntheses. The ability of a polymer bound template to identify and isolate a synthetic receptor via dynamic combinatorial chemistry was not compromised by the large size of the library, consisting of well over 140 theoretical members, demonstrating the practical advantages of a polymer-supported DCL methodology
Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator?
We study a model Dyson-Schwinger equation for the quark propagator closed
using an {\it Ansatz} for the gluon propagator of the form \mbox{} and two {\it Ans\"{a}tze} for the quark-gluon vertex: the
minimal Ball-Chiu and the modified form suggested by Curtis and Pennington.
Using the quark condensate as an order parameter, we find that there is a
critical value of such that the model does not support dynamical chiral
symmetry breaking for . We discuss and apply a confinement test which
suggests that, for all values of , the quark propagator in the model {\bf is
not} confining. Together these results suggest that this Ansatz for the gluon
propagator is inadequate as a model since it does not yield the expected
behaviour of QCD.Comment: 21 Pages including 4 PostScript figures uuencoded at the end of the
file. Replacement: slight changes of wording and emphasis. ADP-93-215/T133,
ANL-PHY-7599-TH-93, FSU-SCRI-93-108, REVTEX 3.
Recommended from our members
Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer.
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments
Chiral Symmetry Breaking in Quenched Massive Strong-Coupling QED
We present results from a study of subtractive renormalization of the fermion
propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched
QED. Results are compared for three different fermion-photon proper vertex
{\it Ans\"{a}tze\/}: bare , minimal Ball-Chiu, and
Curtis-Pennington. The procedure is straightforward to implement and
numerically stable. This is the first study in which this technique is used and
it should prove useful in future DSE studies, whenever renormalization is
required in numerical work.Comment: REVTEX 3.0, 15 pages plus 7 uuencoded PostScript figure
?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
On Renormalized Strong-Coupling Quenched QED in Four Dimensions
We study renormalized quenched strong-coupling QED in four dimensions in
arbitrary covariant gauge. Above the critical coupling leading to dynamical
chiral symmetry breaking, we show that there is no finite chiral limit. This
behaviour is found to be independent of the detailed choice of photon-fermion
proper vertex in the Dyson-Schwinger equation formalism, provided that the
vertex is consistent with the Ward-Takahashi identity and multiplicative
renormalizability. We show that the finite solutions previously reported lie in
an unphysical regime of the theory with multiple solutions and ultraviolet
oscillations in the mass functions. This study supports the assertion that in
four dimensions strong coupling QED does not have a continuum limit in the
conventional sense.Comment: REVTEX 3.0, 15 pages,including 4 eps files comprising 3 figures.
Submitted to Phys. Rev.
Book reviews
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45784/1/11153_2004_Article_BF00140614.pd
The Future of Fundamental Science Led by Generative Closed-Loop Artificial Intelligence
Recent advances in machine learning and AI, including Generative AI and LLMs,
are disrupting technological innovation, product development, and society as a
whole. AI's contribution to technology can come from multiple approaches that
require access to large training data sets and clear performance evaluation
criteria, ranging from pattern recognition and classification to generative
models. Yet, AI has contributed less to fundamental science in part because
large data sets of high-quality data for scientific practice and model
discovery are more difficult to access. Generative AI, in general, and Large
Language Models in particular, may represent an opportunity to augment and
accelerate the scientific discovery of fundamental deep science with
quantitative models. Here we explore and investigate aspects of an AI-driven,
automated, closed-loop approach to scientific discovery, including self-driven
hypothesis generation and open-ended autonomous exploration of the hypothesis
space. Integrating AI-driven automation into the practice of science would
mitigate current problems, including the replication of findings, systematic
production of data, and ultimately democratisation of the scientific process.
Realising these possibilities requires a vision for augmented AI coupled with a
diversity of AI approaches able to deal with fundamental aspects of causality
analysis and model discovery while enabling unbiased search across the space of
putative explanations. These advances hold the promise to unleash AI's
potential for searching and discovering the fundamental structure of our world
beyond what human scientists have been able to achieve. Such a vision would
push the boundaries of new fundamental science rather than automatize current
workflows and instead open doors for technological innovation to tackle some of
the greatest challenges facing humanity today.Comment: 35 pages, first draft of the final report from the Alan Turing
Institute on AI for Scientific Discover
- …