5,749 research outputs found

    Addition of Sodium Bicarbonate to Irrigation Solution May Assist in Dissolution of Uric Acid Fragments During Ureteroscopy

    Get PDF
    Introduction: We hypothesized that adding sodium bicarbonate (bicarb) to normal saline (NS) irrigation during ureteroscopy in patients with uric acid (UA) nephrolithiasis may assist in dissolving small stone fragments produced during laser lithotripsy. In vitro testing was performed to determine whether dissolution of UA fragments could be accomplished within 1 hour. Materials and Methods: In total 100% UA renal calculi were fragmented, filtered, and separated by size. Fragment sizes were <0.5 mm and 0.5 to 1 mm. Similar amounts of stone material were agitated in solution at room temperature. Four solutions were tested (NS, NS +1 ampule bicarb/L, NS +2, NS +3). Both groups were filtered to remove solutions after fixed periods. Filtered specimens were dried and weighed. Fragment dissolution rates were calculated as percent removed per hour. Additional testing was performed to determine whether increasing the temperature of solution affected dissolution rates. Results: For fragments <0.5 mm, adding 2 or 3 bicarb ampules/L NS produced a dissolution rate averaging 91% ± 29% per hour. This rate averaged 226% faster than NS alone. With fragments 0.5 to 1 mm, addition of 2 or 3 bicarb ampules/L NS yielded a dissolution rate averaging 22% ± 7% per hour, which was nearly five times higher than NS alone. There was a trend for an increase in mean dissolution rate with higher temperature but this increase was not significant (p = 0.30). Conclusions: The addition of bicarbonate to NS more than doubles the dissolution rate of UA stone fragments and fragments less than 0.5 mm can be completely dissolved within 1 hour. Addition of bicarb to NS irrigation is a simple and inexpensive approach that may assist in the dissolution of UA fragments produced during ureteroscopic laser lithotripsy. Further studies are needed to determine whether a clinical benefit exists

    Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by SH waves

    Get PDF
    A unidirectional fiberglass epoxy composite plate specimen is modelled as a homogeneous transversely isotropic continuum plate medium. Acousto-ultrasonic non-contact input-output characterization by tracing SH waves in the continuum is studied theoretically with a transmitting and receiving transducer located on the same face of the plate. It is found that the directional dependence of the phase velocity of the SH waves travelling in the transversely isotropic medium has a significant effect on the delay time as opposed to the phase velocity of the SH wave travelling in an isotropic medium

    Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by SV waves

    Get PDF
    A unidirectional fiberglass epoxy compostie specimen is modelled as a homogeneous transversely isotropic continuum plate medium. Acousto-ultrasonic noncontact input-output characterization is studied theoretically with a transmitting and a receiving transducer located on the same face of the plate. The single reflection problem for an incident SV wave at a plane boundary in transversely isotropic medium is analyzed. An obliquely incident SV wave results in a reflected SV wave and a reflected P wave for an angle of incidence of the incident SV wave less than the critical angle. Otherwise, there exists only an SV wave in the medium as the reflected P wave degenerates into a surface wave travelling parallel to the plane boundary. The amplitude ratio of the reflected SV wave is -1 when the angle of incidence is greater than or = the critical angle. The directional dependence of the phase velocity of the SV wave propagating in the transversely isotropic medium has a significant effect on the delay time, as opposed to the directional independence of the phase velocity of a shear wave propagating in an isotropic medium. The displacements associated with the SV wave in the plate and which may be detected by the noncontact receiving transducer are approximated by an asymptotic solution for an infinite transversely isotropic medium subjected to a harmonic point load

    Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by P waves

    Get PDF
    The single reflection problem for an incident P wave at a stress free plane boundary in a semi-infinite transversely isotropic medium whose isotropic plane is parallel to the plane boundary is analyzed. It is found that an obliquely incident P wave results in a reflected P wave and a reflected SV wave. The delay time for propagation between the transmitting and the receiving transducers is computed as if the P waves were propagating in an infinite half space. The displacements associated with the P waves in the plate and which may be detected by a noncontact NDE receiving transducer are approximated by an asymptotic solution for an infinite transversely isotropic medium subjected to a harmonic point load

    Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Get PDF
    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials

    Input-output characterization of fiber reinforced composites by P waves

    Get PDF
    Input-output characterization of fiber composites is studied theoretically by tracing P waves in the media. A new path motion to aid in the tracing of P and the reflection generated SV wave paths in the continuum plate is developed. A theoretical output voltage from the receiving transducer is calculated for a tone burst. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation of fiber composites which can be modeled as transversely isotropic media

    Input-output characterization of fiber composites by SH waves

    Get PDF
    Input-output characterization of fiber composites is studied theoretically by tracing SH waves in the media. A fiberglass epoxy composite is modeled as a homogeneous transversely isotropic continuum plate. The reflection of an SH wave at a stress-free plane boundary in a semi-infinite transversely isotropic medium is considered first. It is found that an incident SH wave reflects only a similar SH wave back into the medium. It is also established that the angle of reflection of the reflected wave is equal to the angle of incidence of the incident wave. The phase velocity of the SH waves and the delay time of the SH waves in reaching the receiving transducer are computed as functions of a reflection index, defined as the number of reflections of the SH waves from the bottom face of the continuum plate. The directivity function corresponding to the shear stress associated with the SH waves in the continuum plate is also derived as a function of the reflection index. A theoretical output voltage from the receiving transducer is calculated for a tone burst (a periodic input voltage of finite duration). The output voltage is shown for tone bursts of duration 60 microseconds and center frequencies of 0.75, 1.00, and 1.25 MHz. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation (NDE) of fiber composites which can be modeled as transversely isotropic media

    Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    Get PDF
    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented

    A Hotel for Independence Center, A Mixed-Use Facility for Charlotte, N.C.

    Get PDF

    A Proposal for Prosecutorial Discovery Depositions in California

    Get PDF
    The purpose of this Note is to advocate the full use of discovery depositions of non-party witnesses in California for the prosecution. By examining the reluctance of the California courts to implement prosecutorial depositions, possible federal constitutional barriers, and the policy arguments for and against such criminal discovery procedures, this Note will demonstrate the necessity for curative legislation
    • …
    corecore