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SUMMARY 

Input-o~tput characterization of fiber composites is 
studied theoretically by tracing SH waves in the media. A 
fiberglass epoxy composite is modeled as a homogeneous 
transversely isotropic continuum plate. 

The reflection of a SH wave at a stress-free plane 
boundary in a semi-infinite transversely isotropic medium is 
considered first. It is found that an incident SH wave 
reflects only a similar SH wave back into the medium. It is 
also established that the angle of reflection of the 
reflected wave is equal to the angle of incidence of the 
incident wave. 

The phase velocity of the SH waves and the delay time of 
the SH waves in reaching the receiving transducer are 
computed as functions of a reflection index, defined as the 
number of reflections of the SH waves from the bottom face of 
the continuum plate. The directivity function corresponding to 
the shear stress associated with the SH waves in the 
continuum plate is also derived as a function of the 
reflection index. 

A theoretical output voltage from the receiving 
transducer is calculated for a tone burst (a periodic input 
voltage of finite duration). The output voltage is shown for 
tone bursts of duration 60 microseconds and center 
frequencies 0.75, 1.00 and 1.25 MHz. The study enhances the 
quantitative and qualitative understanding of the 
nondestructive evaluation (NDE) of fiber composites which can 
be modeled as transyersely isotropic media. 
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INTRODUCTION 

Certain fiber composites are often modeled as equivalent homogeneous solids [1]. 

Continuum models of this sort are useful in analyzing wave propagation in fiber 

composites when the wave lengths under consideration are long compared with the mean 

fiber diameter. 

The input-output characterization of a homogeneous transversely isotropic elastic 

plate is investigated by tracing SH waves. Following the work in [2], the reflection of an 

SH wave at a stress-free plane boundary in a semi-infinite transversely isotropic medium 

is considered first. It is reestablished that an incident SH wave reflects only a similar SH 

wave. It is atso reestablished that the angle of reflection is equal to the angle of incidence 

whenever the plane boundary where the reflection occurs is parallel to the isotropic plane 

of the transversely isotropic medium. 

The plane of isotropy of the equivalent transversely isotropic contiuum plate lies in the 

midplane of the plate and is parallel to each face of the plate [1]. The SH waves 

experience multiple reflections at each face of the plate. The phase velocity of the SH 

waves and the delay time for the SH waves arriving at the receiving transducer are 

computed as functions of a reflection index, which is defined as the number of reflections 

from the bottom face of the continuum plate. The directivity function corresponding to 

the shear stresses associated with the SH waves in the continuum plate is derived also in 

terms of the reflection index. 

Finally, a theoretical ouput voltage from the receiving transducer is calculated for a 

tone burst (a periodic input voltage of finite duration). The theoretical output voltage is 

expressed as an infinite sum over the reflection index. 
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REFLECTION OF INCIDENT SH WAVE AT STRESS·FREE PLANE 

BOUNDARY IN SEMI·INFINITE TRANSVERSELY ISOTROPIC MEDIUM 

WITH PLANE OF ISOTROPY PARALLEL TO PLANE BOUNDARY 

1. REFLECTED SH WAVE 

A plane progressive SH wave may be represented as 

(1) 

for example, see [3], where u, v and w are the displacement components of a point in the 

medium along the x, y and z axes, respectively; A is the amplitude of particle 

displacement; P", P, and p. are the components of the unit vector of particle displacement 

along the x, y and z axes, respectively; i -..J-l; (J) denotes radian frequency; S", S, and S. 

are the components of the slowness vector, which points in the same direction as the 

normal to the wave front and has magnitude equal to the reciprocal of the magnitude of 

the phase velocity, see [4], along the x, y and z axes, respectively; and t denotes time. 

A plane progressive SH wave is incident on the plane boundary of a semi-infinite 

linearly elastic transversely isotropic continuum with plane of isotropy parallel to the 

plane boundary. Define a cartesian coordinate system (x, y, z) as follows: the plane 

boundary of the medium contains the x and y axes, and the z axis is the zonal axis of the 

medium (see Fig. 1). The generalized Hooke's Law, when written relative to the (x, y, z) 

coordinate system is [4] 
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'tu = CllU,x + C12V ,y + C13W,Z 

't)'}' = C12U,x +Cllv,y +C13W,Z 

'tzz = C13U,x + C13v,y + C33W,Z 

't;a = C44(U,Z + W,x) 

't)'Z = C44(V,Z + W ,y) 

't.l)' = C6Q(U,y +V,x) (2) 

where for i = j 'tij is a normal stress and for i ~ j 'tij is a shear stress; "," denotes partial 

differentiation with respect to the succeeding variable; CII' C12, C13' C33' and C44 are the 

five independent elastic constants for a linearly elastic transversely isotropic medium; 

and C(,6 is equal to 1/2(Cu -CI2). 

The stresses associated with a plane progressive SH wave can then be evaluated by 

substituting the expression for the displacement components at a point in the medium, 

given by eqn. (1), into eqn. (2), as 

'tu = iroA(CllS~% +C12S),P), + C13SzPz)exp{iro(S..x +S)'y +Szz -t)} 

't)'}' = iroA(C12S~% +CllS),P), + C13SzPz)exp{iro(S..x +S)'y +Szz -t)} 

'tzz = iroA(C13S~% +C13S),P), +C33SzPz)exp{iro(S..x +S)'y +Szz - t)} 

't;a = iroA(C44S~% + C44S~z)exp{iro(S..x +S)'y +Szz - t)} 

't)'Z = iroA (C44S~)' + C44S),Pz)exp{ic.o(S..x +S)'y +Szz - t)} 

't)'% = iroA(C~)'P% +C~~)')exp{ic.o(S..x +S)'y +Szz -t)} 

The stress boundary conditions on a stress-free plane boundary require [3] 
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(4) 

where the -el) represent the stresses associated with the incident wave and the -e/R) 

represent the stresses associated with the reflected waves. The stresses determined by 

eqn. (3) satisfy the boundary conditions, eqn. (4), only when the frequency, ro, of any 

reflected wave is equal to the frequency of the incident wave [3] and 

(5) 

where S,,(/) and S,(/) are the x and y components of the slowness vector of the incident 

wave, respectively, and S"IR) and S,<R) are the x and y components of the slowness vector of 

any reflected wave, respectively [2]. Eqn. (5) indicates that the incident and the reflected 

waves lie in the same plane, called the plane of incidence. Without loss of generality, the 

plane of incidence can be assumed to coincide with the y-z plane; the analysis is thus 

simplified. Then, the x components of the slowness vectors of the incident and reflected 

waves can be allowed to vanish, thereby satisfying the relation 

S(I) = S(R) = 0 
% % 

(6) 

An SH wave with slowness surface in a plane containing the zonal axis of a 

transversely isotropic medium possesses a transverse displacement [5]. Thus, for an SH 

wave traveling in the y-z plane in the (x, y, z) coordinate system, the unit vector of 

particle displacement is given by 

(7) 
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A wave with p .. , P J and p. given by eqn. (7) and x component of slowness vector given by 

eqn. (6) has stresses determined from eqn. (3) satisfying 

(8) 

A P wave with slowness surface in a plane containing the zonal axis of a transversely 

isotropic medium possesses a vanishing transverse displacement [5]. Therefore, a P wave 

traveling in the plane x=O in the (x, y, z) coordinate system has a unit vector of particle 

displacement 

(9) 

where P/P) and P,fP) are, respectively, the directionally dependent y and z components of 

the unit vector of particle displacement of a P wave. 

A wave p .. , P, and p. satisfying eqn. (9) and S .. determined by eqn. (6) has stresses 

given byeqn. (3) satisfying 

't ='t =0 zy .a 

(10) 

An SV wave with slowness surface in a plane containing the zonal axis of a 

transversely isotropic medium also has a vanishing transverse displacement [5]. The unit 

vector of particle displacement of an SV wave traveling in the y-z plane in the (x, y, z) 

coordinate system is then 

(11) 
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where P/SVJ and P/SVJ are, respectively, the directionally dependent y and z components of 

the unit vector of particle displacement of an SV wave. 

A wave with unit vector of particle displacement determined by eqn. (11) and x 

component of slowness vector given eqn. (6) has stresses evaluated from eqn. (3) 

satisfying 

't ='t =0 xy .a 

(12) 

An SH wave is incident on the plane boundary of a semi-infinite transversely isotropic 

medium. The stresses at the point of incidence associated with the incident SH wave are 

constrained by eqn. (8) and satisfy 

(13) 

where the superscript (l) is used to denote properties associated with the incident wave. 

The stress boundary conditions for any wave reflected by an incident SH wave can be 

expressed by using eqn. (4) and eqn. (8) as 

"'-.R) = "'-.R) = 0 
1& zz 

i!!.) = - "'-./) ~ 0 
.a .a (14) 

where the superscript (R) is used to denote properties associated with the reflected wave. 

Eqn. (10) indicates that the't,.. and't,. components of the stress tensor associated with a P 

wave are not zero and eqn. (12) indicates that the 't,.. and -r.. components of the stress 

tensor associated with an SV wave are also nonzero. Therefore, no P wave or SV wave 

will be reflected back into the medium by an incident SH wave, because a reflected P 
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wave or SV wave would have associated stresses that would violate the stress boundary 

conditions. Eqn. (8) indicates that a reflected SH wave can satisfy the boundary 

conditions. Therefore, an incident SH wave will cause only an SH wave to be reflected 

back into the medium, as shown in [2]. 

2. SLOWNESS SURFACE OF SH WAVE 

The equations of motion relative to the (x, y, z) coordinate system are [4] 

(15) 

where p is the density of the medium and ",tt" denotes the second derivative of the 

preceeding variable with respect to time. 

When the components of stress are calculated according to eqn. (3) and the 

displacement components are calculated according to eqn. (1), the equations of motion 

can be written as [2] 

(CllS; + Crx,S: + C44Sz
2 

- p)Pz + (C12 + C(6)S~,P, + (C13 + C44)S~~z = 0 

(C12 + C(6)SzS,Pz + (Crx,S; + CuS: + C44S; - p)P, + (C13 + C44)S,SzPz = 0 

(Cn + C44)S~~z + (Cn + C44)S,SzP, + (C44S; + C44S: + C33S; - p)Pz = 0 (16) 

Eqn. (16) can be rewritten in matrix form as 

(17) 

where [B] is a 3x3 matrix with entries 
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bn = (CnS;+C~:+C44S;-P) 

bn = (C~;+CllS:+C44SZZ-P) 

b33 = (C44S; + C44S: + C33S; - p) 

biz = bZ1 = (C1Z + C6(,)S~y 

b13 = b31 = (Cn + C44)S~% 

b23 = b32 = (Cn + C44)SyS, (18) 

(PJ),.P.) is the unit vector of particle displacement and [0] is the 3xl zero matrix. The 

matrix [B] as defined by eqn. (18) is a symmetric matrix; therefore, there exist three real 

eigenvalues. One eigenvalue corresponds to an SH wave, another eigenvalue corresponds 

to a P wave, and the third eigenvalue corresponds to an SV wave [2]. 

The plane wave solution is found by setting the determinant of matrix [B], the matrix 

of coefficients of Px ' P, and p., equal to zero [6]. Expanding the determinant of [B] and 

solving for the three roots yields equations for the three slowness surfaces. The slowness 

surface for an SH wave is [7] 

(19) 

The values of the material constants C(J6' C44 and p are given for a representative 

fiberglass epoxy composite in [4] as C(J6=3.243xl()9 N/m2, C44=4.422x109 N/m2 and p 

=1850 kg/m3• The slowness surface of an SH wave traveling in the y-z plane in the 

fiberglass epoxy composite is obtained by substituting the numerical values of the 

constants into eqn. (19) and setting the x component of the slowness vector equal to zero. 

The first quadrant of the slowness surface thus obtained is shown in Fig. 2. 
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3. ANGLE OF REFLECTION OF REFLECTED SH WAVE 

According to eqn. (5) the y component, S,(/) , of the slowness vector of the incident SH 

wave is equal to the y component, S/R) , of the slowness vector of the reflected SH wave. 

The z component, S/R) , of the slowness vector of the reflected SH wave is found from the 

equation for the slowness surface of an SH wave, eqn. (19), by setting S/R) equal to S,(/) 

and S,/R) equal to zero, according to eqn. (6). Then, S/R) is found to satisfy 

(20) 

where S.(/) is the z component of the slowness vector of the incident SH wave. The 

slowness vector of the incident wave points out of the medium, and the slowness vector 

of the reflected wave points into the medium; therefore, the relationship between S.(R) and 

S.(/) must be [2] 

SCR) = -SCI) 
% % (21) 

The angle of incidence is defined as the angle between the slowness vector of the 

incident wave and the nonnal to the boundary at the point of incidence. The angle of 

incidence e(/) of the incident SH wave is then 

(
SCI) ) e(l) = arctan -,­

-SCI) 
% 

(22) 

where the point of incidence is taken to be on the plane boundary of the semi-infinite 

body (see Fig. 1). 

The angle of reflection is defined, in a manner similar to the angle of incidence, as the 

angle between the slowness vector of the reflected wave and the normal to the boundary 

at the point of reflection. The angle of reflection StR) of the reflected SH wave is then 
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(
S(R)] 

e(R) = arctan -Y­
S(R) 

I 

(23) 

Evaluating elR) using eqn. (5) and eqn. (21) and comparing the resulting expression to 

eqn. (22) establishes 

e(R) = e(/) (24) 

Thus, the angle of reflection of the reflected SH wave is equal to the angle of incidence of 

the incident SH wave [2]. 
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INPUT -OUTPUT CHARACTERIZATION OF FmER COMPOSITE 

1. PHASE VELOCITY AND DELAY TIME 

Certain fiber composites may be modeled as a linearly elastic transversely isotropic 

homogeneous continua [1]. A fiber composite modeled as such a solid in the fonn of an 

infmite plate where the plane of isotropy lies in the midplane of the plate is to be studied. 

A cartesian coordinate system (x, y, z) is chosen such that the x-y plane coincides with 

the plane of isotropy and the plate is bounded above by the plane z = hl2 and bounded 

below by the plane z = -h12. 

A transmitting transducer and a receiving transducer are assumed to be coupled to the 

top face of the plate in the y-z plane and separated by a distance L. The input electrical 

voltage of the transmitting transducer is a known function of time, Vj(t). The output 

electrical voltage of the receiving transducer is an unknown function of time, Vo(t). The 

transmitting transducer converts the input electrical voltage into a stress that travels 

through the plate as stress waves. The receiving transducer converts the stress associated 

with the stress waves into an output voltage. In the following analysis, only those stress 

disturbances at the receiving transducer associated with SH waves generated by the 

transmitting transducer will be considered. 

The SH waves produced by the transmitting transducer experience multiple reflections 

at each face of the plate before reaching the receiving transducer. Since the isotropic 

plane of the plate lies in the midplane of the plate and is parallel to the top and bottom 

faces of the plate, each reflection may be treated as the reflection of a plane progressive 

SH wave on the plane boundary of a semi-infinite linearly elastic tranversely isotropic 
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continuum with its isotropic plane parallel to the boundary [2]. Therefore, at each 

reflection the incident SH wave produces only a reflected SH wave and the angle of 

reflection of the reflected SH wave is equal to the angle of incidence of the incident SH 

wave. 

The transmitting transducer and the receiving transducer are coupled to the same face 

of the plate, therefore, any SH wave traveling from the transmitting transducer to the 

receiving transducer must experience an odd number of reflections. Let the total number 

of reflections experienced by an arbitrary SH wave traveling from the transmitting 

transducer to the receiving transducer be equal to 2n-l, where n is called the reflection 

index and is a positive integer equal to the number of reflections from the bottom face of 

the plate. Assume the angle of incidence of the SH wave at the receiving, transducer is e •. 

The angle of reflection is equal to the angle of incidence at each reflection experienced 

by the SH wave, so the angle of incidence at each reflection is ell (see Fig. 3). The 

distance r. traveled by the SH wave between each reflection is calculated from Fig. 3 as 

h , =--
" cose" 

(25) 

The distance b. traveled in the y direction by the SH wave between each reflection is 

b" ='" sine" (26) 

Using eqn. (25) to evaluate r. in eqn. (26), the distance b. can be expressed as 

b" =h tane" (27) 
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The SH wave travels a distance b~ in the y direction between each reflection, between 

the transmitting transducer and the initial reflection, and between the final reflection and 

the receiving transducer; so the total distance B~ traveled in the y direction by the SH 

wave is 

B" = 2nh tan ell (28) 

The transmitting transducer and the receiving transducer are separated by a distance L in 

the y direction, therefore; the total distance traveled by the SH wave must be L. Eqn. (28) 

can then be expressed as 

L =2nh tane" (29) 

The angle of incidence at the receiving transducer must therefore satisfy 

(30) 

where n is a positive integer. 

Eqn. (30) allows all the trigonometric functions of e~ to be calculated (see Fig. 4). The 

tangent of e~ is given by 

(31) 

The sine of e~ is given by 

(32) 

and the cosine of e~ is given by 
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(33) 

The distance r,. traveled by the SH wave between each reflection can be evaluated 

using eqn. (25) and eqn. (33) as 

(34) 

The SH wave travels a distance r,. between each reflection, between the transmitting 

transducer and the ftrst reflection, and between the last reflection and the receiving 

transducer; so the total distance R,. traveled by the SH wave between the transmitting 

transducer and the receiving transducer is 

(35) 

The phase velocity CSH(e) of an SH wave traveling in a transversely isotropic 

continuum is [4] 

CSH(S) = {C66 sin2 S+ C44 COS
2 S}112 (36) 

Using eqn. (32) and eqn. (33), the phase velocity can be expressed in terms of n as 

(37) 

The time delay tIt is deftned as the time taken for the SH wave to reach the receiving 

transducer after being produced by the transmitting transducer. The time delay is thus 

(38) 
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Eqn. (38) can be evaluated using eqn. (35) and eqn. (37) as 

tfl = {L 2 + 4n 2h2} {C~ 2 + C444n2h2rll2 (39) 

The time delay for a typical transducer geometry is shown in Table 1. The transducers 

are assumed to be coupled to a fiberglass epoxy composite plate having continuum model 

with material constants C44=4.422xl()9 N/m2 and C66=3.234x1Q9 N/m2 and separated by a 

distance L= 1 0 cm. The plate is assumed to be of thickness h=5 cm. The time delay is 

shown as a function of the reflection index for values of n from 1 to 9. 

2. ASSUMPTIONS ON TRANSDUCERS 

The transmitting transducer and the receiving transducer are assumed to be transverse 

transducers that transform an electrical voltage into a uniform shear stress or a uniform 

shear stress into an electrical voltage, respectively. The following approach parallels that 

of [8]. 

If an input voltage Vi of amplitude V and frequency CJ) is applied according to 

Vi = Vexp{-irot} (40) 

where i • .,J-l and t denotes time, the shear stress 't .. that is introduced into the medium at 

the transducer-medium interface by the transmitting transducer is 

(41) 
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where FI(ro) is the frequency dependent transduction ratio for the transmitting transducer 

in transfonning a voltage into a stress and ~I is a phase angle. In eqn. (43) and eqn. (44) 

the hannonic character of the signals is expressed in complex notation, but only the real 

parts of these and subsequent equations should be considered. The amplitude T of the 

applied stress is then 

(42) 

Similarly, if a stress wave producing a shear stress component 't ... ' of amplitude T I and 

frequency ro that impinges on the receiving transducer is defined as 

t .• z' (t) = T' exp{ -i rot} (43) 

then the output voltage V
D 
from the receiving transducer is 

(44) 

where Fl(ro) is the frequency dependent transduction ratio for the receiving transducer in 

transfonning a shear stress to a voltage, and ~l is a phase angle. Thus, the amplitude V' of 

the output electrical voltage is 

(45) 

The characteristics of FI(ro) and Fl(ro) are unknown except that the product FI(ro)Fl(ro) is 

dimensionless. 

3. DIRECTIVITY FUNCTION 

The directivity function of the shear stress, 't ... , due to an SH wave traveling in a 

transversely isotropic medium is evaluated from the far-field asymptotic solutions of the 

displacement components produced by a hannonic point load imbedded in an infmite 
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body in [2]. The directivity function D(SH) is given by [2] 

D =------ --s +-s (SH) C44WS; [(C66 .)2 (C44 .)2]112 
41t(CWp)(C

44
/p)112 p Y P % 

(46) 

where S; and S,· are the y and z components, respectively, of a point on the slowness 

surface of an SH wave where the normal to the slowness surface is parallel to the line 

connecting the transmitting transducer and the point at which the directivity function is to 

be evaluated. 

The shear stress, radiated by the transmitting transducer, that is incident at the 

receiving transducer with angle of incidence eN' is assumed to be equivalent to the shear 

stress at a point MN associated with an SH wave traveling in a semi-infinite transversely 

isotropic medium (see Fig. 5). Except for the reflection coefficients at each face of the 

plate the shear stress can be computed as if there were no bottom boundary to the plate 

[2]. 

The slope, m, of the line connecting the transmitting transducer to the point M. is 

found from Fig. 5 to be 

.1y 2nh 
m=-=--& L 

(47) 

Eqn. (47) establishes that the line connecting the transmitting transducer to the point M. 

lies in the y-z plane. Therefore, a point on the slowness surface, (S,,:, s,:, S,,.·), where the 

normal is parallel to the line connecting the transmitting transducer to the point M. may 

be found by setting S"N· equal to zero. 
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The normal to the slowness surface of an SH wave is found at any point in the y-z 

plane by setting the x component of the slowness vector, S", equal to zero and 

differentiating the equation for the slowness surface, eqn. (19), with respect to Sr' the z 

component of the slowness vector. Solving the subsequent equation for the slope, 

-dSjdS" of the normal yields 

(48) 

Combining eqn. (47) and eqn. (48) establishes the constraint on SYft 0 and S'ft 0, the point on 

the slowness surface where the normal is parallel to the line connecting the transmitting 

transducer to the point M
A

, as 

C44SZ: 2nh 
=--

C~y: L 
(49) 

The point (Sx/, SYft°, S'ft°) must lie on the slowness surface of an SH wave and have 

slope satisfying eqn. (49). Therefore, SYA 0 and S'ft 0 can be found by setting S"ft 0 equal to 

zero and then solving eqn. (19) and eqn. (49) simultaneously. Then the value of SYft 0 is 

(50) 

and the value of Srft 0 is 

(51) 
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Substituting eqn. (50) and eqn. (51) into eqn. (46) produces an expression for D/SHJ, 

the value of the directivity function associated with an angle of incidence e~ at the 

receiving transducer. The expression for D ~(SH) as a function of n is 

(52) 

The directivity function for an SH wave traveling in a transversely isotropic plate is 

calculated as a function of the angle of incidence at the receiving transducer by treating 

eqn. (30) and eqn. (52) as a pair of parametric equations with parameter n equal to the 

reflection index. The directivity function D(SH) is shown for an SH wave traveling in a 

fiberglass epoxy composite plate as a function of the angle of incidence at the receiving 

transducer in Figs. 6, 7 and 8. The transducer geometry is assumed to be L=1O cm and 

h=5 cm. The composite plate has with material properties C44=4.422x109 N/m2 and 

C(J6=3.234x109 N/m2 [4]. The directivity function is shown for frequencies equal to 0.75, 

1.00 and 1.25 MHz. 

4. STRESS FIELD RADIATED BY TRANSMITTING TRANSDUCER 

If there were no bottom boundary to the plate and the SH waves were propagating in 

an infmite half-space, the SH wave incident at the receiving transducer with angle of 

incidence e~ would travel to a point M~, in a time tIt' traveling a distance R" (see Fig. 6). 

The amplitude of the hypothetical shear stress at the point M" is T,,(M) and is defined as [2] 

D(SH) 

T~M) = T i-exp{ -fIR,,} 
" 

(53) 
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where T is the magnitude of the point load applied by the transmitting transducer in the z 

direction, D N(SH}, the value of the directivity function for an SH wave associated with the 

point M .. is given by eqn. (52) and a. is the SH wave attenuation constant of the medium. 

The SH wave, however, does not propagate in an infmite half-space, but instead 

experiences 2n-l reflections. The amplitude TON of the shear stress at the receiving 

transducer is thus obtained by modifying eqn. (53) as 

T D ~SH>(Q (SH -SH»2It-l 

To" = R exp{ -aR,,} 
" 

(54) 

where QlSH-SH} is the reflection coefficient for SH waves and is equal to -1 [2]. 

The amplitude VON of the output voltage from the receiving transducer is obtained from 

eqn. (45) and eqn. (54) and is 

(55) 

Substituting eqn. (42) into eqn. (55) yields 

(56) 

where V is the amplitude of the input voltage. Introducing a possible electrical signal 

amplification factor, K, eqn. (56) can be written as 

(57) 
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5. OUTPUT VOLTAGE DUE TO TONE BURST 

Assume the input voltage Vi to the transmitting transducer is a periodic function of 

time, of center frequency co and duration t i• Mathematically the input voltage can be 

expressed as the sum of two periodic functions of frequency co that are 1800 out of phase, 

one beginning at time t=O and one beginning at time t=t,1 The input voltage is then given 

by 

Vi = V exp{icot} U(t) - Vexp{icot} U(t - ti) (58) 

where V is the amplitude of the input voltage, i • ..J-l , and U(x) is the unit step function 

defined as 

if x <0 
(59) 

if x ~O 

The periodic nature of the signal in eqn. (58) and subsequent equations is expressed in 

complex notation, but only the real part of the signal is to be considered. 

The voltage output V
D 

at the receiving transducer is found by considering the two 

terms on the right-hand side of eqn. (61) independently and superposing the voltage 

output associated with each input signal. Consider the input voltage V/ given by the first 

term on the right-hand side of eqn. (58) 

V;' = Vexp{icot} U(t) (60) 

The stress waves produced by a transmitting transducer with input voltage V/ will have a 

periodic character with respect to time. Therefore, the amplitude of the output voltage vo.' 
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associated with the SH wave experiencing 2n-1 reflections will also be periodic in time 

and the output voltage Vo' at the receiving transducer must be found by the superposition 

of the contributions of each reflection path. 

An SH wave experiencing 2n-1 reflections between the transmitting transducer and 

the receiving transducer will be in phase at the receiving transducer with an SH wave 

traveling in a semi-infinite body to a point MR (see Fig. 5). The 'C .. stress associated with a 

plane progressive SH wave is given by eqn. (3) and can be calculated at point MR as 

(61) 

where T MR is the amplitude of the stress and SYR and S'R are the y and z components of the 

slowness vector of the SH wave, respectively. The shear stress 't .. o at the receiving 

transducer is then 

(62) 

where TOR is the amplitude of the stress and is given by eqn. (54). The output voltage VOR ' 

at the receiving transducer is found by substituting eqn. (62) into eqn. (44) to be 

(63) 

where 4> is a phase angle. The output voltage is then calculated using eqn. (42) and eqn. 

(54) and including a possible electrical signal amplification factor K as 
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(64) 

where V is the amplitude of the input voltage and the D ft(SH} is given by eqn. (52). The total 

output voltage V,,' is found by summing eqn. (64) over all n and retarding each 

contribution by the delay time tft to be 

(65) 

where tft is given by eqn. (38). 

The output voltage V,," associated with the input voltage characterized by the second 

term on the right-hand side of eqn. (58) is found similarly to be 

(66) 

where tj is the duration of the input signal. 

In order to evaluate the infmite sum in eqn. (65), S'ft and S'ft must be found as functions 

of n. The components of the slowness vector (0, S'ft' S'ft) associated with the SH wave 

experiencing 2n-l reflections between the transmitting transducer and the receiving 

transducer are constrained by eqn. (22) to satisfy 
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(
S". ) 8" = arctan =--
S," 

(67) 

Substituting eqn. (30) into eqn. (67) yields 

(68) 

Solving eqn. (11) and eqn. (68) simultaneously determines S'ft and S'ft as 

(69) 

The output voltage Vo associated with the input voltage Vi determined by eqn. (58) is 

found by adding eqn. (65) and eqn. (66). Substituting in the values of the constants given 

by eqns. (35), (39) and (69) allows Vo to be written as 
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{u(t -{L' +4n'h'} {C.,.c.' + C .. 4n'h'f"')-

(70) 

where D /SH) is a function of n according to eqn. (52). 

The output voltage predicted by eqn. (70) is shown as a function of time in Figs. 9, 10 

and 11. The transducers are assumed to be coupled to a representative fiberglass epoxy 

composite plate. The composite plate can be modeled as a transversely isotropic 

continuum plate with material properties p=1850 kg/m3, C44=4.422xl()9 N/ml and 

C66=3.234xl()9 N/mz and thickness h=5 cm and transducer separation L=lO cm [4]. The 

continuum plate is assumed to have SH wave attenuation constant a equal to zero. The 

normali:z:ed output voltage V jKF1FzV is shown for center frequencies equal to 0.75, 1.00 

and 1.25 MHz. and a signal duration of 6OJls; the phase angle c!> is set equal to zero. 
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CONCLUSION AND DISCUSSION 

The input-output characterization of certain fiberglass epoxy composite plates can be 

studied using a transversely isotropic continuum plate model when the wavelengths under 

consideration are long compared to the mean fiber diameter. For wavelengths close to or 

less than the mean fiber diameter, a continuum plate model is no longer appropriate and 

the inhomogeneities of the composite must be considered. 

In the analysis of a transversely isotropic continuum plate, the angle of reflection of a 

reflected SH wave is equal to the angle of incidence of the incident SH wave and only an 

SH wave is reflected by the incident SH wave for reflections at the top or bottom face of 

the plate. This is due to the fact that the isotropic plane of the plate is parallel to the two 

faces of the plate. When this geometry is present, the plate can be modeled as a 

semi-infinite transversely isotropic medium, except for the reflection coefficients 

encountered at each reflection which must be factored in separately. Treating the 

continuUIn plate as a semi-infinite body reduces the complexity of tracing stress waves 

through the medium. If this special geometry does not exist, the use of this simplified 

analysis is inappropriate and the plate must be analyzed in a more complicated manner. 

It is possible to compute the relationship between the input voltage to the transmitting 

transducer and the output voltage from the receiving transducer in terms of the material 

constants, the geometry of the transducer arrangement and a single variable, the reflection 

index n. Using the fact that the angle of incidence of an incident SH wave is equal to the 

angle of reflection of the reflected SH wave, the angle e with which the final wave of any 

series of waves from the transmitting transducer to the receiving transducer is incident at 

the receiving transducer can be computed as a function of the reflection index. The 
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nonzero components of the slowness vector of an SH wave traveling in a plane 

perpendicular to the isotropic plane of the plate, the phase velocity of the SH wave, the 

time delay in reaching the receiving transducer, the directivity function of the shear stress 

produced by the transmitting transducer and the output voltage from the receiving 

transducer can then be computed as functions of the reflection index and the geometric 

and physical properties of the plate. 

The output voltage from the receiving transducer, as predicted by eqn. (70), is shown 

in Figs. 9, 10 and 11 as functions of time for input voltages of 60 Ils duration and center 

frequencies of 0.75, 1.00 and 1.25 MHz., respectively. All three output voltages are 

observed to exhibit similar behavior, being characterized by simple harmonic functions 

experiencing discontinuities in amplitude. Checking the times at which these changes in 

amplitude occur against Table 1, which shows the time delays for reflection indices from 

1 to 9, reveals that the amplitude changes occur at the time delays for these values of the 

reflection index. Thus the discontinuities in the output voltages correspond with the 

arrival times of different wave paths. Since the time delay is independent of the 

frequency of the wave, these discontinuities occur at the same time in each output voltage 

regardless of the frequency of the associated input voltage. 

This study enhances the theoretical understanding of the nondestructive evaluation 

(NOE) of transversely isotropic media such as cenain fiber composites. 

28 



REFERENCES 

[ 1 ] 

[ 2] 

[ 3 ] 

[4 ] 

[5 ] 

[ 6 ] 

[ 7 ] 

( 8 ] 

J.D. Achenbach, "A Theory of Elasticity with 
Microstructures for Directionally Reinforced 
Composites," OSIM - Courses and Lectures, No. 167 
(International Center for Mechanical Sciences), 
Springer-Verlag, N.Y., 1965. 

J.H. Williams, Jr. and P. Liao, "Acousto-Ultrasonic 
Input-Output of Unidirectional Fiber Composite 
Plate by SH Waves," NASA Contractor Report 4087, 
August 1987. 

E.G. Henneke II, "Reflection-Refraction of a 
Stress Wave at a Plane Boundary Between 
Anisotropic Media," Journal of Acoustical Society 
of America, Vol. 51 Part 2, April 1972, pp. 
210-217. 

E.R.C. Marques and J.H. Williams, Jr. "Stress 
Waves in Transversely Isotropic Media, The 
Homogeneous Problem," NASA Contractor Report 3977, 
May 1986. 

M.J.P. Musgrave, "On the Propogation of Elastic 
Waves in Acolotropic Media, "Proceedings of the 
Royal Society of London, Series A, Vol. 226, 1954, 
pp. 339-355. 

R.D. Kriz and H.M. Ledbetter, "Elastic 
Representation Surfaces of Unidirectional 
Graphite/Epoxy Composi~es," National Bureau of 
Standards, 2nd USA/Japan Conference in Composite 
Materials, NASA Langley Research Center, Hampton, 
Virginia, 1984. 

V.T. Buchwald, "Elastic Waves in Anisotropic 
Media," Proceedings of the Royal Society, Series 

"A, Vol. 253, 1959, pp. 563-580. 

J.H. Williams, Jr., H. Karagulle and S.S. Lee, 
"Ultrasonic Input-Output for Transmitting and 
Receiving Longitudinal Transducers Coupled to Same 
Face of Isotropic Elastic Plate," Materials 
Evaluation, Vol. 40, May 1982, pp. 655-662. 

29 



Table 1 Time delay in reaching receiving transducer for SH 

wave in composite plate for reflection indices n 

from 1 to 9. 

reflection index n time delay ti 
(microseconds) 

1 2.28 
2 3.46 
3 4.82 
4 6.25 
5 7.71 
6 9.18 
7 10.6 
8 12.2 
9 13.6 

L = 10 cm 

h = 5 em 

C44 4.422 x 10 9 N/rn 2 = 

e 66 = 3.230 x 10 9 N/rn2 
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Fig. 1 

~--------------------~y 

Angle of incidence e(I)of incident SH wave 

and angle of reflection e(R) of reflected 

SH wave shown in y~z plane of (x,y,z) 

coordinate system. 
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