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ABSTRACT

A unidirectional fiberglass epoxy composite specimen is
modelled as a homogeneous transversely isotropic continuum plate
medium. Acousto-ultrasonic non-contact input-output characteri-
zation by tracing SV waves in the continuum is studied theoreti-
cally with a transmitting and a receiving transducer located on
the same face of the plate. The isotropic plane of the equi-
valent continuum plate model lies in the midplane of the plate

and is parallel to the top and bottom faces of the plate.

The single reflection problem for an incident SV wave at a
stress-free plane boundary in a semi-infinite transversely iso-
tropic medium whose isotropic plane is parallel to the plane
boundary is analyzed first. For all angles of incidence, the
angle of reflection of the SV wave is equal to the angle of inci-
dence of the SV wave. It is found that an obliquely incident SV
wave results in a reflected SV wave and a reflected P wave for an
angle of incidence of the incident SV wave less than the critical
angle 52°. when the angle of incidence of an incident SV wave is
equal to or greater than the critical angle, there exists only an
SV wave in the medium as the reflected P wave degenerates into a
surface wave travelling parallel to the plane boundary. The
amplitude of the surface wave decays exponentially with the per-

pendicular distance from the plane boundary. The amplitude




ratios of the reflected P and SV waves to the incident SV wave as
a function of the angle of incidence are plotted from zero to the
critical angle. The amplitude ratio of the reflected SV wave is
found to be minus one when the angle of incidence is equal to or
greater than the critical angle. The balance in energy flux nor-

mal to the plane boundary is checked.

Accordingly, the delay time for wave propagation between the
transmitting and the receiving transducers is computed as if the
SV waves were propagating in a half space. It is found that the
directional dependence of the phase velocity of the SV wave pro-
pagating in the transversely isotropic medium has a significant
effect on the delay time, as opposed to the directional indepen-
dence of the phase velocity of a shear wave propagating in an

isotropic medium.

The displacements associated with the SV wave in the plate
and which may be detected by the non-contact receiving transduc-
er are approximated by an asymptotic solution for an infinite
transversely isotropic medium subjected to a harmonic point load.
The polar diagrams for the directivity function of the stresses

due to SV waves in the plate are shown at frequencies of 0.75,

1.50 and 2.25 MHz.




This study enhances the quantitative understanding of acous-
to-ultrasonic non-destructive evaluation (NDE) parameters such as
the stress wave factor (SWF) and wave propagation in fiber rein-

forced polymeric, ceramic or metallic composites, which can be

modelled as transversely isotropic media.



INTRODUCTION

Fiber reinforced composite materials are attractive materials
for aerospace applications because of their high specific
mechanical properties. It has been shown that many composites,
such as fiberglass epoxy composites or fiber reinforced ceramics
as shown in Fig. 1, may be modelled as a homogeneous transversely
isotropic continuum [1]. In this work, acousto-ultrasonic (AU)
non-contact input-output characterization of a homogeneous trans-

versely isotropic elastic plate is investigated by tracing SV

waves.

First, the single reflection problem of an incident SV wave
at a stress-free plane boundary in a semi-infinite transversely
isotropic medium whose isotropic plane is parallel to the plane
boundary is considered. At such boundaries, the conditions for
the existence of wave mode conversion, critical angle phenomena,
reflected surface wave, the angles of reflection of the reflected

waves, and the amplitude ratios of the reflected waves to the

incident wave are derived.

Second, the SV wave input-output relations are derived when
multiple reflections occur at the top and the bottom faces of the

plate. The delay time between input and output versus the dis-




tance separating the transmitting and receiving transducers is
analyzed. The directivity functions of the stresses associated
with the SV waves are computed. And, the output displacement at

the non-contact receiving transducer is approximated by an

asymptotic solution.

This investigation should enhance the quantitative understan-
ding of AU NDE parameters such as the stress wave factor. It
also provides the potential for assisting in the development of

better NDE schemes utilizing the SWF as well as other AU parame-

ters for the characterization of fiber reinforced polymeric,

metal and ceramic composites.




SINGLE REFLECTION PROBLEM AT STRESS-FREE PLANE BOUNDARY IN
SEMI-INFINITE TRANSVERSELY ISQTROPIC MEDIUM WHQOSE ISOTROPIC PLANE

IS PARALLEL TO PIANE BOUNDARY FOR INCIDENT SV WAVE

1. Reflected P and SV Waves

For a homogeneous linearly elastic transversely isotropic
continuum, the number of independent elastic constants is five
[1]. Define a coordinate system (x, y, z) for a semi-infinite
transversely isotropic medium whose isotropic plane is parallel
to the plane boundary where the reflection occurs as follows: the
plane boundary contains the x and y axes, and the z axis is the
zonal axis of the medium, which is in the direction parallel to
the fiber direction shown in Fig. 1. Also, see Fig. 2. The gen-
eralized Hooke’'s law is written, relative to the (x, y, z) coor-

dinate system, as [1]

Tyx = C114,X + Cqov,y + Cq3w,2z
vy = Cigu,x + Cyqv,y + C13w,z
Tzz = C13u,x + Cy3v,y + C33w,2z
Txz = C4q(u,z2 + w,X)
Tyz = Cpp(v,z + w,y)

Txy - 066(u.}’ + er)

where 7.5 (r, s = x, y and z) are the normal (r = s) and shear

(L)




(r » s) stresses with respect to the coordinate system (x, y, z);
u, v and w are the displacement components of a point in the

medium along the x, y and z axes, respectively; "," denotes par-
tial differentiation with respect to the variable which follows;

and Cy71, C12, C13, C33 and C4y are the five independent elastic

constants where Cgg = 1/2(Cy1 - Cy2).

Let a progressive wave be represented as [2]

(u, v, w) = A (Py, Py, P,) expliw(Syx + Syy + 5,z - t)} (2)

where Sy, Sy and S, are the components of the slowness vector,
which is in the same direction as the normal to the wavefront and
whose magnitude is equal to the reciprocal of the magnitude of
the phase velocity [1], along the x, y and z axes, respectively;

P

P, and P, are the components of a unit vector of particle

X

y
displacement along the x, y and z axes, respectively; A is the

amplitude of particle displacement; t denotes time and w denotes
radian frequency. It follows from Eqs. (1) and (2) that the
stresses can be represented as

Txx = 1wA[Cq1S4Px + ClzsyPy + C]_3Ssz]exp{iw(Sxx + Syy + S,z - t))

Tyy = 1wA{CyoS4Px + CllsyPy + C135;P;)exp{iw(Syx + Syy + S,z - t))

7,7 = 1wA[C13S4Px + C13SyPy + C335,P;lexp{iw(Syx + Syy + S,z - t)}



Tyz = 1WA[Ch4S,Pyx + CpySyPzlexp(iw(Syx + Syy + S,z - t)} (3)

Tyz = iwA[CaaSzPy + Caassz]exp{iw(Sxx + Syy + S,z - t)}

Txy = iwA[C66Sny + CsssxPy]exp{iw(Sxx + Syy + 8,z - t))

The stress boundary conditions on the stress-free plane

boundary require that [2]

sz(I) + 'xz(R) =0

ryz(I) +r,,(R) 20

yz
’zz(I) + Tzz(R) -0

(4)

where rrz(I) (r = x, y and z) represent stresses on the plane

boundary associated with the incident SV wave, and rrz(R) (r = x,

y and z) represent stresses on the plane boundary associated with

the reflected waves.

In order to satisfy Eq. (4), it is required [2] that the
frequency, w, of the reflected wave be equal to that of the

incident wave and that [2]

5, (D = 5, (R)

(5)
I R
g. (I) . g (R)




As a result of Eq. (5), the slowness vectors of the incident and
reflected waves lie in a plane called the plane of incidence.
This analysis can be simplified by assuming that the plane of
incidence is the x = 0 plane; that is, the slowness vectors of
the incident and reflected waves are in the x = 0 plane, as shown

in Fig. 2. Then it follows from Egs. (5) that
s, (D =5, (R) - ¢ (6)

It has been shown [3] that, except along the principal mate-
rial axes, P waves or SV waves travelling in a plane containing
the zonal axis, z axis, of a transversely isotropic medium are
quasi-longitudinal and quasi-transverse, respectively; that is,
in general, the components of the unit vector of particle dis-
placement for either the P or SV waves along the y and z axes,

Py and P,, do not vanish; whereas the components along the x
axis, Py, do vanish. Therefore, it follows from Eqs. (3) and (6)

that stresses associated with P and SV waves are

(7)

It has also been shown that an SH wave travelling in a plane

containing the zonal axis,z axis, of a transversely isotropic



medium possesses a transverse displacement only, that is, for the
coordinates in Fig. 2, (Py, Py, P,) = (1, 0, 0) [3]. Therefore,
it follows from Eqs. (3) and (6) that the stresses associated

with SH waves are

Tyz = Txx ™ Tyy = Tzz = 0

(8) j
» 0O ‘

T Xz V

Xy # 0; 1

Assume that an SV wave is incident on the plane boundary, the

x-y plane in Fig. 2. It follows from Eqs. (4) and (7) that !

ryz(I) » 0 ; TZZ(I) = 0

(9
7xz(1) -0

1
As a result of Eq. (9), it is known from Eq. (4) that r (R) is

Xz
equal to zero. This means that no SH wave will be reflected back
into the medium because a reflected wave of the SH type would

result in a nonzero value of the stress ry,. So, Egs. (4)

reduce to

Tyz(I) + Tyz(R) =0

(10)
228+ 1, (R =0

10




Since either a reflected P wave or a reflected SV wave results in
nonzero values of the stresses ryz(R) and rzz(R), it is therefore
concluded from Eqs. (7) and (10) that both a P wave and an SV

wave may be reflected back into the medium.

2. Slowness Surface for P and SV Waves

The equations of motion relative to the coordinate system (x,
y, z) are [1]

+ T + Txz,z = pu,tt

Txx,x Xy,y

TXY,X + Tyy.y + Tyz,z = pv,tt (1)

+ 7 + Tzz,z = pw, LT

Txz,x yz,y

where the body forces are identically zero for the homogeneous

solution.

It follows from Eqs. (1), (2) and (11) that the following

equations of motion are obtained:

[Cllsxz + C66Sy2 + Caaszz - plPg + (Cyp + C66)SXSyPy

+ (C13 + C44)54S,P, = 0

11



(C12 + Cge)SxSyPx + [CeeSx? + C115y% + €448, - 1Py (12)

+ (C13 + CQQ)SySzPZ =0

(C13 + C4a)SxSzPx + (C13 + C4)SyS,Py + [Cag (52 + Sy2)

+ C338,2 -p]P, = 0

The condition for the existence of the plane wave solution is
expressed by setting the determinant of the matrix of the coef-

ficients of Py, Py and P, in Eq. (12) equal to zero [1]:

2 2 2
[CHSX + C“Sy + C[.(‘Sz -p} (C12 + C66)SXSY (C13 + CAL)SXSZ
(C1p * Ceg)SxSy (CeeSxC * C118,% + C44S;7 o1 (Cyz + C4Q)8,8, = 0
(€43 * Cl 84S, (€13 * Coa8yS; (€408, + 5,2 + €335, -4l

(13)
By expanding Eq. (13), three sheets of slowness surface are

obtained. The slowness surface for an SV wave is given in [3] as

C11 + Cyy 5 2 Cay + C33 )
(—=——————)(84° + Sy°) + (— ) 8,
2 Y 2

) 2 2|2
- 172 (cll - CAA)(SX + Sy ) + (C33 - CQQ)SZ
(14)

+ 4(Sy? + 5,2)5,21(C11 - C44)(C33 - Caq)
y

1/2
- (C13 + C44)? -p

12




where Sy, Sy and S, are the components of the slowness vector for
an SV wave along the x, y and z axes, respectively; p is density;
and Cy1, C13, C33 and Cyy are elastic constants. Similarly, the

slowness surface for a P wave is [3]

€1y + C C33 + C
Gt G s 2, 5,2) + ( 33 * Ca4 s 2
2,42 2|?
+ 1/2 (Cll - Ca[‘)(sx + Sy ) +(C33 - C44)SZ
+4(Sy2 + syz)sz2[(c11 - Cu4)(C33 + Cgy)
1/2
- (C13 + c44>2]} -r (15)

where Sy, S, and S, are the components of the slowness vector for

a P wave along the x, y and z axes, respectively.

One quadrant of the intersection of the slowness surface of
an SV wave in the unidirectional fiberglass epoxy composite shown
in Fig. 1 with the plane x = 0 and one quadrant of the intersec-
tion of the slowness surface of a P wave in the unidirectional
fiberglass epoxy composite with the plane x = 0 are shown from
Eqs. (14) and (15) in Fig. 3; where the numerical values of the
elastic constants and density given in [1] for the unidirectional
fiberglass epoxy composite are used and are as follow: Cy; =

10.581 x 109N/m2, Cq3 = 4.679 x 109N/m?, C33 = 40.741 x 109N/m?,

Cuy = 4.422 x 109N/m?, and p = 1850 kg/m3.

13



3. Angle of Reflection

It follows from Eqs. (5) and (6) that the y-component of the

slowness vector of an incident SV wave is equal to the y-compo-
nent of the reflected SV wave as well as the y-component of the
reflected P wave. Accordingly, the relation between the y-com-
ponent of the slowness vector of an incident SV wave and the

y-component of the slowness vectors of the reflected SV and P

waves is given as

sy(I) - sy(SV)_- Sy(P) = b (16)

where Sy(I) represents the y-component of the slowness vector of
an incident SV wave; Sy(SV) represents the y-component of the
slowness vector of the reflected SV wave; SY(P) represents the

y-component of the slowness vector of the reflected P wave; and b

is a common constant, as shown in Fig. 3.

It follows from Eqs. (6), (14) and (16) that the relation
between the z-component of the slowness vector of an incident SV

wave and that of the reflected SV wave is

s, (1) = . 5, (5V) (17)

The minus sign is due to the fact that the slowness vector of an

14




incident SV wave points out of the medium, whereas the slowness
vector of the reflected SV wave points into the medium, as shown
in Fig. 2. Consequently, the value of the z-component of the
slowness veé¢tor of an incident SV wave, SZ(I), is negative,

whereas that of the reflected SV wave, SZ(SV), is positive.

The angle of reflection is defined as the angle between the
slowness vector of a reflected wave, either type P or SV, and the
normal to the plane boundary where the reflection occurs. Simi-
larly, the angle of incidence is defined as the angle between the
slowness vector of an incident SV wave and the normal to the
plane boundary, as shown in Fig. 2. Therefore, the angle of
reflection of a reflected SV wave fgy is defined as

bsy = tan 1(s,(5V)/s,(SV)) (18)

and the angle of incidence of an incident SV wave 67 is defined
as
61 = tan"1(sy(D)/-5,(D)) (19)

It follows from Eqs. (16) through (19) that, for all angles, the
angle of incidence of an incident SV wave is equal to the angle

of reflection of the reflected SV wave, as shown in Fig. 2.

15



However, the angle of reflection of the reflected P wave is
not equal to the angle of incidence of the incident SV wave. For
a given value of b in Eq. (16), two values of the z-component of
the slowness vector, S,, of equal magnitude but opposite sign
(for a P wave travelling in the plane x = 0 in the transversely
isotropic medium) can be obtained from the slowness surface for
the P wave by substituting Eqs. (6) and (16) into Eq. (15). The
positive z-component of the slowness vector corresponds to the
reflected P wave and is denoted as SZ(P). Similarly, for a given
value of b, there exists a positive z-component of the slowness
vector, SZ(SV), corresponding to the reflected SV wave. Accord-
ingly, for any given value of b in Eq. (16), there exist a posi-
tive z-component of the slowness vector for the reflected SV
wave, SZ(SV), and a positive z-component of the slowness vector
for the reflected P wave, SZ(P). In fact, the z-components of
the slowness vectors of the reflected SV and P waves, SZ(SV) and
SZ(P), for an incident SV wave which determines the value of b in
Eq. (16) and which travels in the plane x = 0 in the transversely
isotropic continuum, can be obtained from the lengths of the per-
pendicular lines between the abscissa representing the value of b
and the intersections with the two sheets of the slowness sur-
faces for the reflected SV and the reflected P waves, respec-
tively, as shown in Fig. 3. It is apparent from Fig. 3 that the

z-component of the slowness vector of the reflected SV wave,

16




SZ(SV), is greater than that of the reflected P wave, SZ(P), for
an incident SV wave travelling in the plane X = 0 in the unidi-
rectional fiberglass epoxy composite [l1]. Consequently, the

angle of reflection of the reflected P wave 6p, defined similarly

to Eq. (18) as
op = tan"1(s,(B)/s (B)y, (20)

is larger than the angle of reflection of the reflected SV wave
for an incident SV wave in the unidirectional fiberglass epoxy

composite, from Egs. (16), (18) and (20).

The critical angle is defined as the angle of incidence of an
incident SV wave at which the slowness vector of the reflected P
wave becomes tangent to the plane boundary where the reflection
occurs. For the specific case of an incident SV wave in the uni-
directional fiberglass epoxy composite in Fig. 1, it has been
shown above that the angle of reflection of the reflected P wave
is greater than that of the reflected SV wave. Thus, the criti-
cal angle phenomenon occurs for this composite. The critical
angle for an incident SV wave in the unidirectional fiberglass
epoxXy composite shown in Fig. 1 is equal to 52°. The angle of

reflection of the reflected P wave versus the angle of incidence

of an incident SV wave in the unidirectional fiberglass epoxy

17



composite [1] is plotted from zero to the critical angle 52°, as

shown in Fig. 4.

4. Amplitude Ratios of Reflected Waves to Incident Wave for

Angle of Incidence Less Than Critical Angle

It has been stated that an SV wave and a P wave will be
reflected back into the semi-infinite transversely isotropic
medium if the angle of incidence of the SV wave incident on the
plane boundary is less than the critical angle. The stress
boundary conditions for an incident SV wave whose slowness vec-

tor is in the plane x = 0 can be rewritten, from Eqs. (4) and

(7), as

T

NG R € € R

(21)
rzz(I) + rzz(sv) + rzz(P) =0

where ’yz(I) and rzz(I) represent the shear and normal stresses
associated with the incident SV wave; ryz(SV) and Tzz(SV)
represent the shear and normal stresses associated with the
reflected SV wave; and ryz(P) and rzz(P) represent the shear and
the normal stresses associated with the reflected P wave.

The shear stress, ryz(I), associated with an SV wave of unit

amplitude travelling in the plane x = 0 and incident on the plane

18




boundary at the origin, as shown in Fig. 2, can be obtained from

Eqs. (3) and (6) as

r

yz(1> - iw(CSSSz(I)Py(I) + CSSSY(I)PZ(I)) (22)

where Py(I) and PZ(I) are the components of the unit vector of
particle displacement of the incident SV wave along the y and z
axes, respectively. Similarly, the normal stress, rzz(I),

associated with the incident SV wave of unit amplitude can be

expressed, from Eqs. (3) and (6) as

15, (1) = iw(C13Sy(I)Py(I) + C338,(Dp, (1)) (23)

The shear stress, ,yz(SV)’ and the normal stress, rzz(sv),
associated with the reflected SV wave on the plane boundary at

the origin are, from Eqs. (3) and (6)

ryz(SV) - iwA(SV)(CSSSz(SV)Py(SV) + c555y(3V)Pz(SV)) (24)

and

1,,5V) - iwA(SV)(C13Sy(SV)Py(SV) + C335,(8V)p,(5V)) (25)

where Py(SV) and PZ(SV) are the components of the unit vector of

particle displacement of the reflected SV wave along the y and z

19



axes, respectively; and A(SY) is the amplitude of the reflected

SV wave.

The shear stress, ryz(P), and the normal stress, fzz(P),
associated with the reflected P wave on the plane boundary at the
origin are, from Eqs. (3) and (6),

ryz(P) - iwA(P)(CSSSz(P)Py(P) + csssy(P)Pz(P)) (26)

and

722 F) = 10A(F) (0135, (PIRG(B) + cq35, (P)p, (P)) (27)

where Py(P) and PZ(P) are the components of the unit vector of
particle displacement of the reflected P wave along the y and z
axes, respectively; and A(P) is the amplitude of the reflected P

wave.,
Upon substitution of Eqs. (22) through (27) into Eq. (21),

the stress boundary conditions for an incident SV wave of unit

amplitude travelling in the plane x = 0 can be expressed as

20



SZ(I)Py(I) + sy(I)pz(I) + A(P)(SZ(P)Py(P) + sy(P)pz(P))
+ A(SV)(SZ(SV)py(SV) + Sy(SV)pZ(SV)) ~ 0

(28)

(C13Sy(I)Py(I) + c33sz(I)Pz(I)) + A(P)(C13Sy(P)Py(P)
+ C33SZ(P)P2(P)) + A(SV)(Cl3Sy(SV)Py(SV)

+ C335,(5V)p, (8V)y — o

The components of a unit vector of particle displacement
along the y and z axes of an SV wave travelling in any plane
containing the zonal axis of a transversely isotropic medium are
given in [3], and when applied to the present case of the

reflected SV wave travelling in the plane x = 0, can be expressed

as

2 2|2
By (SV) - [“sv - (C33 - C44)5, 5V ]///{[Hsv - (C33 - C44)5; V) }

211/2
+ |[(Cq13 + CQQ)Sy(SV)Sz(SV)
(29)

212
p,(SV) - [(013 + Caa)sy(sv)sz(sv)]///{[ﬂsv - (C33 - C4p)5, V) ]

211/2
+ |(Cy3 + ChA)Sy(SV)Sz(SV)

21



where Hgy 1is defined as
(sv)2 (sv)?
Hgy = 1(C11 - Cu4)Sy + (C33 - C44)Sy

2 2|2
- {[<011 - Caa)sy(sv) + (C33 - C44)5,(5V) }

(C11 - Cu44)(C33 - Cuy)

211/2
- (Cl3 + C44)2] } }///2

Similarly, the components of a unit vector of particle displace-

2 2
- 45, (8N, (SV) [

ment along the y and z axes for the reflected P wave travelling

in the plane x = 0 can be expressed as

[ 2
2 2
Py(F) = 1Hp - (C33 - Cuy)S,(P) J///{[HP - (€33 - Cug)S, (P }

-2 1/2
+ | (Cq13 + CQA)SY(P)SZ(P)

(30)

] 12
p,(P) - ((c13 + C44)8,(P)s (B ///{[Hp - (€33 - C4s)S, (P }

-

r

-2 1/2
+ [(Cq13 + C44)Sy(P)SZ(P)

L

.

22




where Hp is defined as
()2 (p)?
Hp = 1(C11 - Cas)Sy + (C33 - Cuy)S,
()2 (P)?
+1]€C11 - CugdSy™t7 + (C33 - Cphy)S,

2 502
- 45y (P75, (B) [(011 - C44)(C33 - C4p)

211/2
e C“‘)z] } }/2

The amplitude ratios of the reflected SV and P waves, A(SV)
and A(P), for an incident SV wave of unit amplitude whose angle
of incidence is less than the critical angle can be determined
from Eq. (28). For a given incident SV wave, the values of the
components of the slowness vector along the y and z axes, Sy(I)
and SZ(I), and the values of the components of the unit vector of
particle displacement along the y and z axes, Py(I) and PZ(I),
are defined as part of the specification of the incident SV wave.
The values of the components of the slowness vector of the
reflected SV wave along the y and z axes, Sy(SV) and SZ(SV), are
determined from Eq. (16) and (17), respectively. The values of
the components of the unit vector of particle displacement along

the y and z axes for the reflected SV wave, Py(SV) and PZ(SV),

23



are obtained by substituting Sy(SV) and SZ(SV) into Eq. (29).

The values of the coefficients for A(SV) ip Eq. (28) are thus
obtained. Since the y-component of the slowness vector of the
reflected P wave, Sy(P), is equal to that of the incident SV
wave, Eq. (16), the value of the z-component of the reflected P
wave, Sz‘P)' is obtained by substituting Sy(I) into the slowmess
surface for the P wave, Eq. (15). On substitution of the values
of SZ(P) and Sy<P) into Eq. (30), the values of the unit vector
of particle displacement along the y and z axes for the reflected
P wave, Py(P) and PZ(P), are determined. The values of the
coefficients for A(P) in Eq. (28) are thus obtained. The values
of the amplitudes of the reflected SV and P waves, AGSY) ang
A(P), are then obtained by solving Eq. (28) with the thus-
determined values of the coefficients for A(SY) and A(P) in Eq.
(28) for a given incident SV wave. By varying the angle of inci-
dence of the incident wave. By varying the angle of incidence of
the incident SV wave of unit amplitude and by repeating the
procedures described above, the amplitude ratios of the reflected
SV and P waves to the the incident SV wave are obtained as func-
tions of the angle of incidence. For an incident SV wave in the
unidirectional fiberglass epoxy composite as shown in Fig. 1, the
amplitude ratios of the reflected SV and P waves to the incident
SV wave versus the angle of incidence are plotted in Fig. 5 from

zero to the critical angle 52°.

24




5. Existence of Reflected Surface Wave for Angle of Incidence

Equal to or Greater Than Critical Angle

It is seen from Fig. 5 that at the critical angle
52°, the amplitude ratio of the reflected SV wave to the incident
SV wave is minus one and the amplitude ratio of the reflected P
wave to the incident SV wave is -2.98 instead of being equal to
zero. This suggests the possibility of the existence of a sur-
face wave travelling parallel to the plane boundary for the angle
of incidence equal to or greater than the critical angle. 1In the
case of an incident SV wave in a semi-infinite isotropic medium
with an angle of incidence greater than the critical angle, there
P wave whose amplitude

exist a reflected SV wave and a surface [

decays exponentially with the perpendicular distance from the

plane boundary [4].

Consider an SV wave travelling in the plane x = 0 in the
semi-infinite transversely isotropic medium which is incident on
the plane boundary, with the angle of incidence equal to or

greater than the critical angle. Assume that there exists a sur-

face wave travelling parallel to the plane boundary; that is, the
x-component and the z-component of its slowness vector, Sy and

S,, vanish, whereas the y-component of its slowness vector, Sy,
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does not vanish, as shown in Fig. 6(a). Let the reflected sur-

face wave be represented as

(u, v, w) = A(S)exp(-Clz)(Px(S), Py(s), Pz(s))

exp{iw(sy(s)y - t)} (3L)

where PX(S), Py(s) and PZ(S) are the components of a unit vector
of particle displacement of the reflected surface wave along the

X, ¥y and z axes, respectively; a(5) is the amplitude of particle

displacement of the reflected surface wave; Sy(s) is the y-com-
ponent of the slowness vector of the reflected surface wave; and

C1 is an undetermined real constant which is equal to or greater

than zero.

Now, rearrange Eq. (31) into the following form:

(u, v, W) = A(S)(Px(s), Py(s)1 pz(S))

exp(iw(Sy Sy + 1(C1/w)z] -¢) (32)

On substitution of Eq. (32) into Eq. (11), we find that

P, (5) =0

2
[0115y(3)" - Cug(Cr/w)? - p1Ry(S)
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+ (C13 + CM&)Sy(S)i(Cl/w)PZ(S) -0 (33)

(€13 + C4)Sy(8)i(Cq/w)Ry(S)
2
+ [6448y3)7 - c33(c/)? - p12,(5) = 0

The condition for the existence of non-trivial solutions for
3y(S) and PZ(S) is expressed by setting the determinant of the

matrix of the coefficients of Py(s) and PZ(S) in Eq. (33) equal

to zero:

2
[Cllsy(s) - C[‘a(cl/w)z - p] (Cl3 + Caa)sy(s)i(cl/w)
=0
2
(€13 + C44)84(S)i(C/w) [C445y(5)" - C33(Cr/w)? - p]
(34)
Expanding Eq. (34), we cbtain
2 2
C33C44|(C1/@) 2| + |C33(p - C115,(5)7)
(35)

2 2
+ Canle - CagSy(8)7) + (013 + Cup)25y(5)7| (01/w)2
5)2 5)2
+ (p - €115y ) (0 - €448,y =0

Eq. (35) is a quadratic equation in (Cl/w)z; designate its
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coefficients as follows:

A = C33C4
($)2 ()?
B = C33(p - C118y""7 ) + Cuu(p - CuySy™>7 )

2
+ (C13 + C44)28y(5) (36)
2 2
¢ = (p - €115y ) (o - Cuysy (50T
It is apparent from Eq. (36) that A is always positive.

By definition, at the critical angle, the angle of reflection
of the reflected P wave-op is equal to 90° [4]; accordingly,
SZ(P) in Eq. (20) is equal to zero. Therefore, the value of b in
Eq. (16) corresponding to the critical angle is thus determined
by setting Sy and S, in Eq. (15) equal to zero, and is found to
be (p/Cll)l/z. As stated following Zgq. (19), the angle of
reflection of the reflected SV wave fgy is equal to 90° when the
SV wave is tangentially incident on the plane boundary; accord-
ingly, SZ(SV) in Eq. (18) is equal to zero. Therefore, the value
of b in Eq. (16) corresponding to the incident SV wave whose
slowness vector is parallel to the plane boundary and is in the
plane x = 0 is determined by setting Sy and S, in Eq. (1l4) equal
to zero, and is found to be (p/C44)1/2. The necessary condition

for the occurrence of the critical angle phenomenon for an SV
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wave travelling in the plane x = 0 is that the value of
(p/CAa)l/2 has to be greater than that of (p/Cll)l/Z [5]. Take
numerical values of (p/Caa)l/2 and (p/C11)1/2 for the
unidirectional fiberglass epoxy composite shown in Fig. 1 from
[1] as follows: (p/Cy7)1/2 = 0.418(s/km) and (p/Cy)1/2 =
0.647(s/km), as shown in Fig. 3. Therefore, these values satis-
fying the necessary condition on the occurrence of the critical

angle phenomenon for an incident SV wave in the unidirectional

fiberglass epoxy composite.

It has been shown [5] that when the angle of incidence of an
incident SV wave travelling in the plane x = 0 is equal to or
greater than the critical angle, the value of b in Eq. (16) lies
between (p/C11)1/2 and (p/Chy)1/2, that is; (p/C1Y/2 = b <
(p/C44)1/2, as shown in Fig. 3. In addition, it follows from Eq.
(5) that the y-component of the slowness vector of the reflected
surface wave, Sy(s), is equal to b in Eq. (16). As a result, the
value C in Eq. (36) is equal to or less than zero when the angle
of incidence of an incident SV wave travelling in the plane x = 0
is equal to or greater than the critical angle; that is, C < 0.
Accordingly, the value of B2 - 4AC defined in Eq. (36) is equal
to or greater than zero for the angle of incidence equal to or

greater than the critical angle; that is,
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B2 - 4aC = B2 + 4aA|C| = 0 (37)
Thus, the possible solutions to the quadratic equation in (Cl/w)2

in Eq. (35).are

-B * (B2 - 4ac)l/2

2
C - 38
(C1/w) ™ (38)

However, it follows from Eq. (37) that the wvalue of B2 -4AC is

equal to or greater than that of B2 for any angle of incidence

equal to or greater than the critical angle. Consequently, the

solution to (Cl/w)z, from Eq. (38), is

, B+ (B2 - 4ac)l/2
(€1 /w)? = — >0 (39)

Accordingly, there exists a real constant C; given in Eq. (31)
when the angle of incidence of the incident SV wave travelling in

the plane x = 0 is equal to or greater than the critical angle,

and is expressed from Eq. (39), as

=20 (40)

[ -B + (B2 - 4ac)l/2 }
Cl=w
24

The existence of a real constant C1 in Eq. (40) confirms the

existence of the surface wave assumed in Eq. (31).

It is therefore concluded that when the angle of incidence of
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an incident SV wave travelling in the unidirectional fiberglass
epoxy composite as shown in Fig. 1 is equal to or greater than
the critical angle, only an SV wave is reflected back into the
medium, and the reflected P wave degenerates into a surface wave
which travels parallel to the plane boundary and whose amplitude

decreases exponentially with perpendicular distance form the

plane boundary, as shown in Fig. 6(b).

6. Balance in Energy Flux Normal to Plane Boundary

The balance in energy flux normal to the plane boundary must

be satisfied [2]. For the angle of incidence less than the crit-
ical angle, the balance in energy flux normal to the plane bound-

ary z = 0, as shown in Fig. 2, is expressed as [2]
I P Sv
F,(D + 7, (B) + F,(8V) = ¢ (41)

where FZ(I), FZ(SV) and FZ(P) are the z-components of the energy

fluxes of the incident SV wave, the reflected SV wave and the

reflected P wave, respectively.

The z-component of the energy flux of an incident SV wave of

unit amplitude travelling in the plane x = 0 is [6]
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2
Fo (D = 02(04q2y (D5, (1) + cqqp (D, (D5 (D

(42)
2
+ C44Py(I)Pz(I)Sy(I) + C33PZ(I) SZ(I))

Similarly, the z-components of the energy fluxes of the reflected

SV and the reflected P waves are [6]

P, ® —a®202(0,,2, %5, (® 4 g gp (P)p, (s (B
43)
2
+ C44Py(P)Pz(P)Sy(P) + C33PZ(P) SZ(P))

and

2 2
F, (SV) —p(SV) w2 (C4uy SV s, BV 4 Cl3py(SV)PZ(SV)sy(SV)

SV)p (SV)a (SV sv)y2e (sV (44)
+ CAAPy( )pz( )sy( ) 4+ C33Pz( ) Sz( )y

Since the frequency term w2 is common to Eqs. (42), (43) and
(44), the balance in energy flux normal to the plane boundary,

Eq. (41), is not affected by assuming the value of the frequency

w to be equal to unity. Accordingly, subsequent calculations of

the values of the z-components of the energy fluxes of the inci-

dent SV wave and the reflected SV and P waves, FZ(I), FZ(SV) and

FZ(P), are done by assuming the radian frequency w to be equal to

one.
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The value of the z-components of the energy fluxes in Egs.
(42) ,(43) and (44) are obtained similarly to the calculations of
the amplitude ratios of the reflected P and SV waves to the inci-
dent SV wave for the angle of incidence less than the critical
angle. For a given incident SV wave of unit amplitude, the
y-components of the slowness vector and of unit vectors of par-
ticle displacement, Sy(I), Sy(SV), Sy(P), Py(I), Py(SV) and
Py(P), and the z-component of the slowness vectors and of the
unit vectors of particle displacement, SZ(I), SZ(SV), SZ(P),
PZ(I), PZ(SV) and PZ(P) of the incident SV wave and the reflected
SV and P waves are determined first. Then combining the ampli-
tudes of the reflected SV and P waves, A(SY) ang A(P), with the

(P /I\ (SV P) 1
sy\ ), s,(1), s, ¢ V) Sz( ), py( ),

xr

S (SV

y
Py(SV), Py(P), PZ(I), PZ(SV) and PZ(P), the values of the

values of Sy(I), ),
z-components of the energy fluxes of the incident SV wave
and the reflected SV and P waves, FZ(I), FZ(SV) and FZ(P), are

thus obtained from Eqs. (42), (43) and (44).

For an SV wave of unit amplitude travelling in the plane x =
0 in the unidirectional fiberglass epoxy composite shown in Fig.
1 incident on a plane boundary, the z-components of the energy
fluxes of the reflected SV and P waves and the energy flux of the
incident SV wave are plotted in Fig. 7 from zero to the critical

angle 52°, with the value of the frequency w in Eqs. (42), (43)
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and (44) equal to one. The balance in energy flux normal to the

plane boundary, Eq. (41), is also checked and is shown in Fig. 7.

When the angle of incidence of an incident SV is equal to or
greater than the critical angle, only an SV wave is reflected
back into the medium with its amplitude ratio to the incident SV
equal to minus one, and the reflected P wave degenerates into a
surface wave whose energy flux is parallel to the plane boundary
[6]. As a result, the energy flux normal to the plane boundary
due to the surface wave is equal to zero. The balance in energy
flux normal to the plane boundary z = 0, as shown in Fig. 6(a),

for the angle of incidence equal to or greater than the critical

angle is expressed as [2]

F(D + r(8Y) = o (45)

The relationships between the components of the unit vector
of particle displacement of an incident SV wave travelling in the
plane x = O along the y and z axes, Py(I) and PZ(I), and those of
the reflected SV wave can be obtained by substituting Eqs. (16)

and (17) into Eq. (29) and can be expressed as

p.(I) = p_(8V)
y y (46)
pz(I) - _pz(SV)
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On substitution of Eqs. (16), (17) and (46) into Egs. (42)

and (44), it is found that

F,(D = .F,(5V) (47)

Accordingly, the balance in energy flux normal to the plane bou-
ndary, Eq (45), is satisfied when the angle of incidence of an

incident SV wave is equal to or greater than the critical angle.
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ACOUSTO-ULTRASONIC NON-CONTACT INPUT-OQUTPUT CHARACTERIZATION OF

UNIDIRECTIONAL FIBERGLASS EPOXY COMPOSITE PILATE

It has been shown that the unidirectional fiberglass epoxy
composite shown in Fig. 1 may be modelled as a homogeneous trans-
versely isotropic continuum. For the axes shown in Fig. 1, the
isotropic plane of the equivalent continuum lies in the midplane
of the plate [1]. A cartesian coordinate system (x, y, z) is
chosen so that the x-y plane is the isotropic plane; thus, the
upper and lower faces are at z = h/2 and z = -h/2, respectively,
where h is the plate thickness. The properties of the equivalent
continuum model of the unidirectional fiberglass epoxy composite

plate to be considered are [1]

h =01lm

€17 = 10.581 x 109 N/m?

C13 = 4.67 x 109 N/m? (48)
C33 = 40.741 x 109 N/m?

Chy = 4.422 x 109 N/m?

Cgg = 3.243 x 107 N/m2

p = 1850 kg/m3

Non-contact transmitting and receiving transducers are

located on the same face of a fiberglass epoxy composite plate
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specimen, as shown in Fig. 8. The unidirectional fiberglass
epoxy composite plate specimen is considered as a plate of thick-
ness h and of infinite planar (x-y) extent. The input electrical
voltage to the transmitting transducer is Vj(t) and the output
electrical voltage from the receiving transducer is V (t) where t
represents time. The transmitting transducer converts an input
electrical voltage into a stress, whereas the receiving trans-
ducer converts a displacement associated with stress waves trav-
elling in the plate into an output electrical voltage. In the
following analysis, only the SV waves are traced. The SV waves
which are generated by the transmitting transducer located above

point O experience multiple reflection at each face of the plate,

and then reach the receiving transducer located above point M, as
shown in Fig. 9. Since the isotropic plane lies in the midplane

and is parallel to both the top and bottom faces where the mul-
tiple reflections occur, the angle of reflection of the reflected
SV wave is equal to the angle of incidence of an incident SV wave
for each reflection at each face of the plate. Accordingly, the
SV waves travelling from the input O to the output M may be con-
sidered as waves propagating in a semi-infinite transversely iso-
tropic medium and travelling to point M’ as if there were no

bottom face, as shown in Fig. 9.
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1. Delay Time and Phase Velocity

Let the input O and the output M lie in the y-z plane.

Assume the number of reflections at the bottom face experienced by

the SV wave in travelling from the input 0 to the output M is n,

as shown in Fig. 9. With respect to the z axis, the angle of

incidence of the SV wave at each face of the plate is 4, and the
total distance travelled by the wave is R;.

From the geometry in
Fig. 9,

§ = tan~l(£/2nh) (49)

where £ is the separation distance between the input 0 and the

output M,

R, = £/sinf (50)
The delay time t, for the SV wave to reach the receiving trans-

ducer is

tn = Rp/C1(8) (51)

where C1(f) is the directionally-dependent phase velocity of the

SV wave. The phase velocity C{ of an SV wave in the unidirec-

tional fiberglass epoxy composite plate is [1]

- 1/2
C1(8) = [(Chy + Cy1sind + Cyzcos?d - JE)/2p] / (32)
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where
i 02 2 2
E = [(C11 - Cu4)sin®d + (Cyy - C33)cos“f]

+ 4(C13 + C44)2sin20c0520 ;
C11, €13, €33, C44 and p are given by Eq. (48).

The phase velocity C; as a function of the angle of incidence §

is shown in Fig. 10.

The delay time is then computed when the number of reflec-
tions n at the bottom face of the plate is equal to 10, 100, 300
or 500. The numerical results are shown in Fig. 11 where the
delay time t, is plotted as the ordinate, and the dimensionless

separation 2/h is piotted as the abscissa, for values of zero to

300.

2. Displacements Detected by Receiving Transducer

The displacements detected by the non-contact receiving
transducer above point M, radiated by the non-contact transmit-
ting transducer, are assumed to be equivalent to the displacement
at point M’ associated with the SV wave propagating in a semi-

infinite transversely isotropic medium. Except for the reflection

coefficients at each face (to be discussed later), the displace-

ment is computed as if there were no bottom boundary, as shown in
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Fig. 9. The displacement at point M’ is approximated by the
far-field asymptotic solution for large R, of an infinite trans-

versely isotropic medium subjected to a harmonic point force.

Consider an infinite transversely isotropic medium in which
the z axis of a rectangular cartesian coordinate system O(x, vy,
z) is the zonal axis of the medium, and the x-y plane coincides
with isotropic plane, as shown in Fig. 12. The equations of

motion including the body force are [7]

Txx,x ¥ Txy,y * Txz,z + PX = pu,tt (53)
"xy,x ¥ Tyy,y ¥ Tyz,z * PY = pv,tt (34)
Txz,x ¥ Tyz,y * Tzz,z + PZ = pu,tt (53)

where 7,.. (r, s = x, y and z) are the normal (r = s) and shear
(r » s) stresses with respect to the chosen coordinate system
O(x, y, z); u, v and w are displacement components of a point in
the medium along the x, y and z axes, respectively; X, Y and Z
are the components of the body force along the x, y and z axes,
respectively; p is the density; t is time ; and "," denotes

partial differentiation with respect to the variable which fol-

lows.
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Combining Eqs. (1) and (55) gives

Cia + C c c
Fott = (3288 ) A2z + (—2%) Iixx + (—2%) I'yy
p p p (56)
c
+ ( 33 Y T,zz + 2,2

p
where ' and A are given by [6]
' =w,z and A = u,x + v,y .
By differentiating Eq. (53) with respect to x and Eq. (54) with
respect to y, we find, on addition of the resulting equations and

using the appropriate stress-strain relation, Eq. (1), that

Cixy + Cyy (o)
A tt =(_i§~___iﬁ) (T,xx + T,yy) +--—ift A,zz
p p

(57)

C11
+—= (A,xx + A,yy) +X,x+ Y,y
p

For a harmonic point force at the origin, the body forces may

be taken of the form [7]

X = X 8(x)8(y)8(z)e 10t

Y = Y 5(x)6(y)6(z)e 10t (58)

Z = Z,6(x)6(y)6(z)e 10t

where §(r) (r = x, y and z) is the Dirac delta function.
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Express I' and A as threefold Fourier Integrals [7] as

follows:

T(Sx.Sy,Sz,t)

;—_—‘8

I'(x,y,z,t) = J

8

exp(iw(Syx + Syy + S,z - t)}dsxdsydsz
A(x,y,Z,t) - J JZ(SxysyysZyt)
-0
exp{iw(Syx + Syy + S5,z - t)}dedSdez

where

[(Sx,Sy.S7,t) = 1/8N3JJJF(x,y,z,t)

-

exp{iw(-Syx - Syy - S,z + t)}dxdydz.

JA(x,y,z,t)

exp{iw(-Syx - Syy - S;z + t))dxdydz.

B(Sx,Sy,Sz,t) = 1/8x3

8 8
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Similarly, X,x, Y,y and Z,z can be expressed as threefold Fourier

integrals
)
,X = 1lwSy [{X exp{iw(Syx + Syy + S,z - t))dedSdez
-0
KN
Y,y = inyJ j? exp(iw(Syx + Syy + S,z - t))dSydSydS,

8

Z,z = inzJ

8
c__._ﬂa

where

X = 1/8«3JJJXOS(x)s(y)a(z)e'iwt

-0

Z exp(iw(Sgx + Syy + S;z - t))dS,dS,ds,

(60)

(61)

(62)

exp(iw(-SxX - Syy - S,z + £)dS,dSyds, = X,/8x

and, similarly, Y - Yo/8n3; 7 - Zo/8n3.
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Substitution of Eqs. (58) through (62) into Eqs. (56) and (57) gives

Cuu/p(Sx2 + Sy2) + C33/pS,2 -1

A= 3
8n wH(Sx,Sy,Sz)

(iSgXo + 1SyY¥y)

. -(C13 + Caa)/p (SX2 + Syz)
BmwH(Sy, Sy, S5)

iS,Z,

—  -(Cy3 + Cuz)/p S,2
D= 22— 2 (45X, + iS,Y,)
BrwH(Sy, Sy, S7)

C11/p(5x2 + Sy2) + C33/p5,2 -1
8n3wH(Sx,Sy,Sz)

is,z

z<0

where

Cav _ 9 . C11 2 2
H(SX’Sy’SZ) = [7 SZ +——;— (SX + Sy y -1

C C
52 v st ¢ 2267 )
p P

C44+C3
(25, 2(5,.2 4 5.2
p

(63)

(64)

(65)

In fact, H(Sg, Sy, S;) = 0 represents the two sheets of slowness

surface, one for a P wave and one for an SV wave [8]. As

result of Eqs. (63) and (64),
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-(C13 + C44)/p S;°
rx,y,z,t) = iS X iS,Y
(x,y,2,t) IJJ [[ 8K3wH(Sx,Sy,SZ) (i xdo * 1 y o)

. [cll/p(sx2 + Sy2) + C33/pS,% -1 sz
8mowH (S, Sy, S5) zme
(66)

expl{iw(Syx + Syy + S,z - t))

Cuu/p(Sx? + Sy2) + C33/p8,2 -1
ACX,y,Z,t) = e 3376527 "M (15.%, + 15,%,)
8m wH(Sy, Sy, S;) y

-(Cqa + C s, 2 + 5,2

8xwH (S, ,Sy,S.)
x190y1°z (67)

expl{iw(Syx + Syy + 8,z - )}

The asymptotic solution at a large distance from the point
force is obtained by applying the theory of residues, the method

of stationary phase, and the radiation condition [8] as

w N -(C13+Css) . 2
F(x,y,z,t) = ~ —— Z A —_—_ S5 (1S4 Xqt+iSynYy)
%,y ) 7R n_lAn n { ) zn xnfot1ioynio

c c
+ [ LS ST T synz)-+-¥1§ S, - 1]isznzo]
p

(68)

exp{iw(Synx + Syny +S,02 - ©))
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w N C C
A(X,¥,Z,t) = ~ — 3 Aj)p {[_ﬁi_(sxn2+ Synz) . 33 Szn2' 1]
p p

27R n=1
) ) - (C13+C44) 2
(1o +iSyn¥e) + ———" (Sxn’* Sy’ iSznZo}
exp{iw(Sgpnx + Syny + 8,42 - t)} (69)

where R is the distance from the origin O where the point forces
are applied to the location of interest Q in the medium, as shown
in Fig. 12; (Sg4p. Syn' Szn) are points on the slowness surface
for an SV wave where the normal is parallel to the 0Q direction;
N is the total number of points (S¢n» Syn’ S,n) are points over
which the summation must be performed ; A, is the amplitude

coefficient and is given by

1/2

. { H,S¢2 + H,5,2 + H,5,° } 709
; K|

where K, is given as

kn = £ [H,S,2(H, 5,5y H,5ySy - H,5,8,2) 1)

+ 2H,Sy H,Sy(H,S,S, H,SyS, - H,S4Sy H,5,5,)]

where T denotes the sum with respect to cyclic permutation of Sy,
Sy and S,; the symbol | | denotes "the magnitude of"; Ap is

evaluated at points (Syp, Syn' S,n) on the slowness surface for
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an SV wave where the normal is parallel to the 0Q direction,
exclusive of those singular points (Sxn> Synr Szn) resulting in
Ky in Eq. (71) equal to zero; and A, is the phase constant and is

determined as follows: A, =1 if Khn>0or Aj =1 if Kp, < 0.

The displacement components along the x, y and z axes, u, Vv
and w due to an SV wave can be obtained by direct integration of
the definition of T and A in Eq. (56), and are given as [8]

S
: "'S"‘zx‘_s 2,4
lw(Sgc + y )

S

V- .____71————7 A (72)
lw(sy“ + Sy )
1 —

w = I
inz

Substitution of Eqs. (68) and (69) into Eq. (72) gives the
asymptotic solutions at a large distance to the displacement com-

ponents along the x, y and z axes, u, v and w, as follows:

-1 N S Cugy C
U~ — 3 AnAn{ 0 H (Sxn? + Syn?) + 3 5, 2 - 1]
(S¢n ) p

2nR n=1 + Syn2 P
-(Cy13+Cpy)
(iSxnZXo*iSyn2¥o) + -——-—-12 B (5,02 + Syn?) 1Szn? Zo ]

exp{iw(Sypnx + Syny + 8,52 - t)} (73)
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ot

-i

N S Cues C

yn 2 2 33 2
v ~ Z Apa (S + S ) + S -1
27R n=1 n ( [[ Xn yn p zn ]

7
Sen® + Syn®) p
) -(€13+C44)
(1840 2Xo+18yn2¥g) + —=——=" (Sgu? + Syn?) 18,17,
p
exp(iw(SynX + Syny + S,nz - t)) (74)
1 N -(C13%Cy4) .
W~ —— I Ak, | Syn(iSy X +iSy¥,)
27R n=1 p

1 C3
+ <-%-(5xn2 + Synd) +-;§ S,n2 - 1)Z,

exp{iw(ank + Syny + S,4z - ) (75)

3. Directivity Functions

The shear stress Tyz and the normal stress 7,, associated
with the SV waves reaching the point M’ in Fig. 9 are used to
study their associated directivity functions. The asymptotic
shear stress Tyz and the asymptotic normal stress r,, are’given

by substituting Eqs. (68) through (72) into Eq. (1) as

w

N -(C13+C44) 2, .
T,, ~ — 2 A A, {C33|———— S, (1anxo+1sano)
27R n=1 P

c c
+ [ ;1 (Sgn? + Syn?) +-—%§ S,nl - 1]isznzo ] +
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Cus C33
C13 [[—;-(san + Syp?) + - Szn? - 1| (iSgn¥o+iSynYy)

-(C 3+044)
S e (an2 + Synz) 1S2n2o

p
exp{iw(SgnX + Sypy + Sz - t)) (76)
Cs5w N -(C13+C44)
2 . .
Tyz ~ — nglAnxn {Syn[““‘j;“" Szn (1anXo+1Sano)

C11 C
+ (—p—(s,m2 + Syp?) +-%§ S,n% - 1)iz°]

SynS c c
yn>zn 44 2 33 . .
N arra [[ (Syxn + Syn?) +—= 5,52 - 1] (iSxpX,+iSynY,)
Xn yn p

-(C13+Chs) . i
+ e Sy ¥ Syn?) 1sznz°J'

exp(iw(Synx + Syny + S,pz - t)) (77)

The directivity functions associated with the normal stress
T, in Eq. (76) and the shear stress Tyz in Eq. (77) will be
evaluated for the case of Sy = 0. Due to the axial symmetry with
respect to the zonal axis, the z axis, of the transversely iso-

tropic medium, the wvalues of the directivity functions thus

obtained hold for all values of Sy.

Consider the case of the point forcevacting along the y
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direction only; that is, Y, » 0 but X, = Z, = O in Eq. (58).

: s : Y
The directivity function Dyz of the shear stress Tyz

associated with an SV wave is evaluated from Eq. (77) along the

arc y2 + z2 = 1 in the positive y-z quadrant by setting Y, = R =

1;
Y wCsg N -C13 2 . €33 9

D - —u T AMNS, ( —==S§ + === S -1
yz 27!‘ 1’1-1 nvzn p yn p n

exp(iw(Syny + Sznz)} (78)
where the summation ¥ is done vectorially in a complex plane over
each type of wave passing a given point (0, y, z) on the arc y2 +
22 = 1; each wave corresponds to a point (O, Syn’ Szn) on the
slowness surface of an SV wave at which the normal is parallel to

the radius vector of the given point (0, y, z). Similarly, the

directivity function Dzz of the normal stress r,, is, from Eq.

(76), for Yo = R = 1;

Y w N C13Cus4 . 2 C33Cus .
‘ DI - b AS S =22 g -C
; zz T o0 =1 Anrn yn [ P yn P zn 13
exp{iw(Syny + Sznz)}| (79)

Next, consider the case of the point force acting along the =z

direction only; that is, Z, » 0 but X, = Y, = O in Eq. (58).

YA
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The directivity function Dyz of the shear stress Tyz
associated with an SV wave is evaluated from Eq. (77) along the

arc y2 + 22 = 1 in the positive y-z quadrant by setting Z, = R =

1
z wss | N C11 . 2, ©33 - G4 - C13 2
Dyz - Py nElA.nanyn l:—;— Syn + ) Szn -1

exp{iw(Syny + Sznz))‘ (80)

Similarly, the directivity function D,, of the normal ‘stress 7,

is, from Eq. (76), for Z, = R = 1;

2
z w N €11C€33 -C13C44 -C13
Diz = — Z ApAnSzn Svn2
2 n=1 P 7
C332 ()
+ p sZn2 - C33} exp{iw(Syny + Szpz))

Finally, consider the case of the point force acting along the
X direction only; that is, X, » 0 but Y, = Z, = 0 in Eq. (58). It
follows from Eqs. (76) and (77) that the values of the shear

stress Tyz and the normal stress r,, associated with an SV wave

travelling in the plane x = 0 are equal to zero.

The polar diagrams for the directivity functions of the shear

stress Tyz and the normal stress 7, (Dgz, Dzz, Dgz and Dgz given



in Eqs. (78) through (8l1) ) associated with the SV waves propa-

gating in the unidirectional fiberglass epoxy composite as shown
in Fig. 1 are obtained by substituting Eq. (48) into Egqs. (78)

through (81) at frequencies of 0.75, 1.50 and 2.25 MHz.

Numerical results are shown in Figs. 13 through 24 where the
angle of incidence # given in Eq. (49) is used to determine the
direction in which the values of points (0, Syn’ S,n) on the
slowness surface, where the normal is parallel to the given

direction, is thus obtained.

4., Assumptions of Transducers

The non-contact transmitting transducer in Fig. 8 is assumed
to transform an electrical voltage into a uniform stress; how-
ever, the non-contact receiving transducer in Fig. 8 transforms a
displacement into an electrical voltage. The approach below is
similar to that given in [9]. Referring to Fig. 8, if an input

voltage of amplitude of V and frequency w is applied according to
Vi(t) = Ve iwt (82)

The stress o that is introduced into the specimen plate by the

non-contact transmitting transducer is
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o(t) = Fp(w)Ve 1(wt + ¢71) (83)
where Fj(w) is the transduction ratio for the non-contact
transmitting transducer in transforming a voltage to a stress
and ¢ is a phase angle. In Egs. (82) and (83), the complex
harmonic character of the signals is expressed in the complex
notation where i = /-1 and only the real part of these and
subsequent equations should be considered. Thus, the amplitude T
of the applied load is defined as

T = F(w)V (84)

Similarly, if a stress wave producing a displacement d of

amplitude D and frequency w that is detected by the non-contact

receiving transducer is defined as

d(t) = De-liwt (85)

the output voltage from the non-contact receiving transducer, see
Fig. 8, is
Vo(t) = Fo(w)De-1(wt + ¢2) (86)

where Fy(w) is the transduction ratio for the non-contact

receiving transducer in transforming a displacement to a voltage,

and ¢9 is a phase angle. Thus, the amplitude V' of the output
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electrical voltage is

V' = Fy(w)D (87)

The characteristics of Fj(w)Fy(w) are unknown except that the

dimensions of the product Fj(w) are [kg/mzosecz].

5. Steady-State Output Voltage Amplitude due to Multiple Wave

Reflections in Plate

Since the SV wave traced in the unidirectional fiberglass
epoxy composite plate specimen shown in Fig. 9 is travelling in

the y-z plane, it follows from Eqs. (73), (74) and (75) that only

the displacement components along the y and z axes, v and w, are

detectable at the point M’. Consider first the point force

acting along the y direction only; that is Y, = 0 but X, = Z, = 0

in Eq. (58).

The amplitude of the y-component displacement D3 evaluated at

the point M’ can be obtained from Eqs. (50) and (74) as

£1(Syn, Son)
DY 1\°yn» °zn Y

v R, 0 (88)

where

N
£1(Syn: Szn) = 1/2n| T AgAn[(Cas/p)Syn? + (C33/0)Szn? - 1]
n=1

exp{iw(Syny + 5,42))
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and is evaluated along the arc y2 + x2 =1, Similarly, the

amplitude of the z-component displacement Dz evaluated at the

point M’ can be obtained from Eqs. (50) and (75) as

£5(Syn, S,p)
DY - 2\°yn» 9zn Y, (89)

Y Rp

where

N
= 1/2n| I ApA[(C13 + C44)/P1SynSzn
n=1

fZ(Syn’ Szn)

exp{iw(Syny + S,n2))}

Next, consider the point force acting along the z direction

only; that is Zy » O but X, = Y, = 0 in Eq. (58).

The amplitude of the y-component displacement D% evaluated at

the point M’ can be obtained from Eqs. (50) and (74) as

£5(Syn, S.n)
DZ - 2 zZn Zq

M Ry
Z

Similarly, the amplitude of the z-component displacement Dy

(90)

evaluated at the point M’ can be obtained from Eqs. (50) and (75)

as
£3(Syq, S
pZ - =3¢ y;n zn) 5 (91)
where
8 2 2
£3(Syn, Szn) = 1/27| T Anhal(€11/0)Sya? + (633/)Sz” - 1]
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exp{iw(Syny + S,42))

Finally, consider the point force acting along the x direc-
tion only; that is, X, » 0 but Y, = Z, = 0 in Eq. (58). It
follows from Eqs. (74) and (75) that the amplitude of the y-com-
ponent displacement'and the amplitude of the z-component dis-
placement vanish at the point M’. This is due to the fact that

the SV wave is travelling in the y-z plane.

According to Eqs. (88) through (91), the amplitude of a dis-
placement component at the point M’, denoted as Dy-, can be

expressed in the following form as

£5(S

Dy = yn: Szn) o (92)
R,

where T is the applied point force and is equivalent to either Y,

or Z, in Eqs. (88) through (91); and fi(Syn, Szn) (i =1, 2 or 3)

is determined from one of Egs. (88) through (91), depending on

which displacement component is measured and along which direc-

tion the point load is applied.

However, with the bottom boundary present, the wave is
reflected a total of (2n -1) times, as shown in Fig. 9. Thus,

the amplitude of displacement at the point M is Dy and is

expressed as
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2n-1
Dy = Qsvsy Dy (93)
where Qgygy is the amplitude ratio of the reflected SV wave to
the incident SV wave, as shown in Fig. 5, and is a function of
the angle of incidence # defined in Eq. (49). Here, we have

ignored the effects of mode conversion.

The amplitude of the output voltage form the non-contact

receiving transducer is V' and can be obtained by substituting

Eqs. (92) and (93) into Eq. (87) as

2
Fo(w)Qgysy fi(syn’ Szn) T (94)

Rn

Substitution of Eq. (84) into Eq. (94) gives

2
F1(0)F3(@)Qgysy £5(Syn: Szn) V (95)

Ry

’

Introducing the SV wave attenuation constant a of the unidirec-
tional fiberglass epoxy composite and a possible electrical sig-

nal amplification factor K, Eq. (95) can be written as

e-aRn

2n-1

Eq. (96) gives the output voltage amplitude from the non-contact
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receiving transducer due to an input voltage amplitude V at the
non-contact transmitting transducer when the SV wave path has
undergone n reflections from the bottom face of the unidirec-

tional fiberglass epoxy composite plate specimen, as shown in

Fig. 9.
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DISCUSSION AND CONCLUSION

In the acousto-ultrasonic input-output characterization of the
unidirectional fiberglass epoxy composite plate, the angle of
reflection of the reflected SV wave is equal to the angle of
incidence of the incident SV wave for each reflection at either
the top or the bottom face of the plate. This is due to the fact
that the isotropic plane is parallel to both faces of the plate.
However, if the parallelism between the isotropic plane and the
plane boundaries where reflection occurs does not exist, the
angle of reflection is not equal to the angle of incidence. 1In
such a case, the use of a semi-infinite transversely isotropic
medium, neglecting the existence of the bottom face of the plate
except for the cumulative reflection coefficients, to compute the
delay time, the displacements and the directivity functions

becomes inappropriate.

For an SV wave travelling in an isotropic medium, its phase
velocity is a constant value; that is, its phase velocity is
directionally independent. However, as shown in Fig. 10, the
phase velocity Cy of an SV wave travelling in a unidirectional
fiberglass epoxy composite plate is a function of the angle of
incidence §. Consequently, the directional dependence of the

phase velocity of an SV wave in the unidirectional fiberglass
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epoxy composite plate has an effect on the delay time when con-
ducting acousto-ultrasonic input-output characterization. This
phenomenon can be observed at low values of dimensionless separa-
tion £/h in Fig. 11, where sharp increases in delay time t, are
caused by an increase in the number of reflection n from the bot-
tom face of the plate at a given value of the dimensionless sepa-
ration 2/h. Low values of dimensionless separation £/h correspond
to an angle of incidence # (given in Eq. (49)) whose value is
less than 60° which is the abscissa of the maximum phase velocity
C1, as shown in Fig. 10. For angles of incidence § less than
60°, the phase velocity C; increases with increasing angle of
incidence 6§, as shown in Fig. 10. However, an increase in the
number of reflections n from the bottom face of the plate for a
given plate thickness h and a given separation distance £ results
in a decrease in the angle of incidence # given by Eq. (49),
thereby increasing the travelling distance R, according to Eq.
(50) and decreasing the accompanying phase velocity. The
increase in the travelling distance R, and the decrease in the
phase velocity C; account for the sharp increases in the delay
time t, at low values of dimensionless separation £/h. For the
case of an SV wave travelling in an isotropic medium, the
increase in the delay time t, caused by an increase in the number
of reflections n is attributed solely to the increase in the

travelling distance Rj.
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Consider the case of a given number of reflections n. For a
given plate thickness h, an increase in the separation distance 2
results in an increases in the travelling distance R,, as shown
in Fig. 9, and an increase in the angle of incidence 6§ given by
Eq. (49). An increase in the angle of incidence # may result in
an increase or a decrease in the SV-wave phase velocity Cqp,
depending on whether the angle of incidence 4 is less than or
greater than 60°, as shown in Fig. 10. However, as the separa-
tion distance £ approaches infinity, the angle of incidence ¢
will approach 90°, and the phase velocity C1 will reach a limit,
as shown in Fig. 10. Consequently, (for £/h -+ =) the increase in
the delay time t, is due almost exclusively to the increase in

the travelling distance R, which is similar to the isotropic

medium case.

This theoretical investigation provides a step forward in the
quantitative understanding of acousto-ultrasonic nondestructive

evaluation (NDE) parameters such as the stress wave factor (SWF)

in transversely isotropic media. It also provides the potential

for assisting in the development of more efficient and more

revealing NDE schemes utilizing wave propagation.
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‘ncident SV wave Slowness vector o

Fig. 2

reflected SV wave

Slowness vector of
reflected P wave
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Coordinate system (x,y,z) in the analysis of single
reflection problem at stress-free plane boundary of
semi~infinte transversely isotropic medium for angle
of incidence less than critical angle; z=0 is plane
boundary where single reflection occurs, z<0 is free
space, and x=0 is plane of incidence.
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P wave
amplitude decreases
exponentially with z

ﬁz

Sloyvne’ss vector
of incident Slowness vector
SV wave 6. 28 of reflected
1-Y SV wave
91 Slowness vector
of reflected
P wave
— Y
O @
P Reflected surface P wave
(a) (b)
X
Fig. 6

Existence of reflected surface P wave whose amplitude
decreases exponentially with z for angle of incidence of
incident SV wave in unidirectional fiberglass epoxy
composite, equal to or greater than critical angle Ocs
z=0 is plane boundary where single reflection occurs,
z2<0 is free space, and x=0 is plane of incidence.
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Fig. 12

Schematic illustrating sinusoidal point load exciting
infinite transversely isotropic medium, where xy plane
is isotropic plane in cartesian coordinate system

defined by 0(x,y,z).
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