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ABSTRACT

A unidirectional fiberglass epoxy composite plate specimen is mod-
elled as a homogeneous transversely isotropic continuum plate medium.
Acousto-ultrasonic non-contact input-output characterization by trac-
ing SH waves in the continuum is studied theoretically with a trans-
mitting and a receiving transducer located on the same face of the

plate.

The single reflection problem at a stress-free plane boundary in a
semi-infinite transversely isotropic medium whose isotropic plane is
parallel to the plane boundary is analyzed first. It is found that an
incident SH wave results in a reflected SH wave only; the amplitude
ratio of the reflected SH wave to the incident SH wave 1is negative
one; and the angle of reflection of the reflected SH wave is equal to
the angle of incidence of the incident SH wave. The balance in energy

flux normal to the plane boundary is also checked.

The delay time is calculated as if the SH waves were propagating
in an infinite half space. It is found that the directional depen-
dence of the phase velocity of the SH waves travelling in the trans-
versely isotropic medium has a significant effect on the delay time,
as opposed to the directional independence of the phase velocity of

the SH wave travelling in an isotropic medium.



The displacement associated with the SH wave in the plate detected
by the non-contact receiving transducer is approximated by an asymp-
totic solution for an infinite transversely isotropic medium subjected
to a harmonic point load. The polar diagrams for the directivity
function of the shear stress due to SH waves in the plate are shown at
frequencies of 0.75, 1.50 and 2.25 MHz. To maximize signal detection,
the transverse transmitting transducer should be placed such that the
applied force generated by it is in the direction perpendicular to the
line connecting the transmitting and the receiving transducers. This
study enhances the quantitative understanding of acousto-ultrasonic
nondestructive evaluation (NDE) parameters such as the stress wave
factor (SWF) and wave propagation in fiber reinforced composites or
any other materials which can be modelled as transversely isotropic

media.




INTRODUCTION

Fiber reinforced composite materials are attractive materials
for aerospace applications because of their high specific mechanical
properties. It has been shown that many composites, such as the uni-
directional fiberglass epoxy composites or fiber reinforced ceramics,
as shown in Fig. 1, may be modelled as a homogeneous transversely iso-
tropic continuum [1]. 1In this work, acousto-ultrasonic (AU) non-
contact input-output characterization of a homogeneous transversely

isotropic elastic plate is investigated by tracing SH waves.

First, single reflection problem of an incident SH wave at a
stress-free plane boundary in a semi-infinite transversely isotropic
medium whose isotropic plane is parallel to the plane boundary is con-
sidered. At such boundaries, the conditions for the existence of wave
mode conversion, the angle of reflection of the reflected wave, and
the amplitude ratio of the reflected wave to the incident wave are

derived.

Second, the SH wave input-output relations are derived when mul-
tiple reflections occur at the top and bottom faces of the plate. The
delay time between input and output versus the distance separating the
transmitting and receiving transducers is analyzed. The directivity

function of the shear stress associated with the SH waves is computed.



And, the output displacement at the non-contact receiving transducer

is approximated by an asymptotic solution.

This investigation should enhance the quantitative understanding
of AU NDE parameter such as the stress wave factor. It also provides

the potential for assisting in the development of better NDE schemes

utilizing the SWF.




SINGLE REFLECTION PROBLEM AT A STRESS-FREE PLANE BQUNDARY IN SEMI-

INFINITE TRANSVERSELY ISOTROPIC MEDIUM WHOSE ISOTROPIC PLANE IS PARAL-

LEL TO PLANE BOUNDARY FOR INCIDENT SH WAVE

1. Reflected SH Wave

For a homogeneous linearly elastic transversely isotropic con-
tinuum, the number of independent elastic constants is five [1].
Define a coordinate system (x, y, z) for a semi-infinite transversely
isotropic medium whose isotropic plane is parallel to the plane bound-
ary where the reflection occurs as foliows: the plane boundary con-
tains the x and y axes, and the z axis is the zonal axis of the
medium, which is in the direction parallel to the fiber direction shown
in Fig. 1, as shown in Fig. 2. The generalized Hooke's law is writ-

ten, relative to the (x, y, z) coordinate system, as [1}:

Tyx Ciqu,x + C12v'y + Cq3vw,z

Tyy = Ciou,x + Cy1v,y + C13w,2
T2 = Ci3u,x + Cy3v,y + Ci3w,z
Txz = C44(u,z + W,%) (1)

Tyz = Coq(v,z + w,y)

Cgg(u,y + v,x)



where Trs (r, s = x, y and z) are the normal (r = s) and shear (r = s)
stresses with respect to the coordinate system (x, y, z); u, v and w
are the displacement components of a point in the medium along the x,
y and z axes, respectively; "," denotes partial differentiation with
respect to the variable which follows; and C;3, Cyj, C13, C33, and Gy

are the five independent elastic constants where Cgg = 1/2(Cy; - Cyp).

Let a plane progressive wave be represented as [2]
(u, v, w) = A (Py, Py, P,) exp(iw(Syx + Syy + S,z - t)} (2)
where Sy, Sy and S, are the components of the slowness vector, which

is in the same direction as the normal to the wavefront and whose mag-
nitude is equal to the reciprocal of the magnitude of the phase velo-
city [1], along the x,y and z axes, respectively; P, Py and P, are
the components of a unit vector of particle displacement along the x,
y, and z axes, respectively; A is the amplitude of particle displace-
ment; t denotes time and w denotes radian frequency. It follows from
Eqs. (1) and (2) that the stresses can be represented as

Tyx = lwA[C11SxPx + ClZSyPy + C13S,P,Jexp(iw(Syx + Syy + S,z - t)}

Tyy = 1A[C12SxPx + C11SyPy + C13S,P lexp(iw(Syx + Syy + Syz - t))
Tzz = 1wA[C13S4Py + Cl3SyPy + C33S,P,]exp{iw(Syx + Syy + S,z - t))
Txz = 10A[C44S,Py + C44SyPylexpliw(Syx + Syy + Szz - t)) (3)
Tyz = iwA[CaASzPy + Caassz]exp{iw(Sxx + Syy + S,z - t))

Txy = iwA[C66Sny + C66$xPy]exp(iw(Sxx + Syy + S;z - t))

The stress boundary conditions on the stress-free plane boundary




require that [2]

rxz(I) + 'xz(R) =0
'yz(I) + ryz(R) -0 (4)

221 + 1, (R =0

where rrz(I) (r=x, y and z) represents stresses on the plane boundary
associated with the incident wave, and rrz(R) (r = x, y and z)
represents stresses on the plane boundary associated with the
reflected waves. In order to satisfy Eq. (4), it is required [2] that
the frequency, w, of the reflected waves be equal to that of the

incident wave and that

Sx(I) - SX(R) -

sy(I) - sy(R).
As a result of Eq. (5), the slowness vectors of the incident and
reflected waves lie in a plane called the plane of incidence. This
analysis can be simplified by assuming that the slowness vectors of
the incident and reflected waves are in the plane x = 0, as shown in
Fig. 2. Since the slowness vectors of the incident and reflected

waves are in the plane x = 0,

5.(1) = 5, (R) =0, (6)



It has been shown that an SH wave with slowness vector in a
plane containing the zonal axis of a transversely isotropic medium
possesses a transverse displacement; that is, for the coordinates in

Fig. 2, (Py, P,) = (1, 0, 0) [3]. It follows from Egs. (3) and

Py,

(6) that the stresses associated with SH waves are

Txx = Tyy = Tzz = Tyz = 0 (7)

Txz * 0 Txy » 0,

It has also been shown [3] that an SV wave and a P wave with slowness
vector in a plane containing the zonal axis of the transversely iso-
tropic medium are quasi-transverse and quasi-longitudinal, respec-
tively; the component of the unit vector of particle displacement for
SV and P waves along the x axis, Py, vanishes, whereas the components
along the y and z axes, Py and P,, do not. It follows from Egs. (3)

and (6) that stresses associated with P and SV waves are

TXy = Txz = 0

(8)

Assume that an SH wave is incident on the plane boundary, the

x-y plane in Fig. 2. It follows from Eqs. (4) and (7) that




(D =, (D _

T

Xz zzZ

(9
rxz(I) » 0.

As a result of Eq.(9), it is known from Eq. (4) that ryz(R) and
TZZ(R) are equal to zero. This means that no P or SV waves will be
reflected back into the medium because a reflected wave of either the
P or SV type results in nonzero values of the stresses Tyy and r,,. It

follows from Eq. (4) that
reg (D 4 7, (B 20 (10)

Since a reflected SH wave results in nonzero values of shear
stresses, 7y, and Xy it is therefore concluded that only an SH wave

will be reflected back into the medium.
2. Slowness Surface for SH Wave

The equations of motion relative to the coordinate system

(x,y,z) are [2]

+ 7

Txx,x xy,y ¥ Txz,z = Pu,tL

Txy,x + Tyy.y + Tyz,z = pv,tt (11)

Txz,x + 'yz,y + T22,z = pw,tt




It follows from Eqs. (1), (2) and (11) that the following equa-

tions of motion are obtained:

[0115x% + CggSy? + CuuSz2 - p1Pyx + (C1p + Ce6)SxSyPy
+ (C13 + C44)SxSzP; = O

(CL2 +C66)SxSyPx + [CeeSx” + C115y? + CaySz% - plBy  (12)
+ (C13 + C44)5ySzP; = O

(C13 + C4u)SxSzPx + (€13 + C4s)SyS,Py + [Cus(Sx? + Sy2)

+ C335,2 -p]P, = O

The condition of the plane wave solution is expressed by setting
the determinant of the matrix of the coefficients of P, Py and P, in

Eq. (12) equal to zero [1]:

[C115,° + CegSy2 *+ C408,° -#) (€12 + Ceg)S, Sy (€13 *+ €44)5,S,

(C12 + Ceg)SySy [CeeSx’ * C118.2 + €448,2 -p1 (Cq3 + €4)5,5, =0
2,2 2

(C13 * 44255, (13 * C44)8yS; (Caq(Sx™ * Sy7) + C335;" -4]

(13)
Expanding Eq. (13), we obtain three sheets of slowness surface. The

slowness surface for an SH wave is [3]

Cp(Sx2 + Sy2) + €448z = 5 . (14)

10




In the present study, the slowness vectors of the incident and
reflected SH waves are confined to the y-z plane, as shown in Fig. 2.
The intersection of the slowness surface with the plane x=0 is given

by (3] as

Cee o 2 Cot, 2
—5= Sy° + 5— Sz° - 1. (15)

The numerical values of the constants C,4, Cgg and p for the
fiberglass epoxy composite shown in Fig. 1 are given in [1] as
Chy = 4.422 x 107 N/m2, Cgg = 3.243 x 109 N/m2, and p = 1850 kg/m3.
One quadrant of the slowness surface for an SH wave travelling in the
fiberglass epoxy composite is obtained by substituting the numerical
values of the elastic constants and the density into Eq. (15), and is

shown in Fig. 3.

3. Angle of Reflection

It follows from Eq. (5) that the component of the slowness vec-
tor of an incident SH wave along the y axis, Sy(I), is equal to that
of the reflected SH wave, Sy(R). As result of Egs. (5) and (15), the
relationship between the z-components of the slowness vectors of an

incident SH wave and the reflected SH wave is

n



5,1 = . 5, (R (16)

The minus sign is due to the fact that the slowness vector of an
incident SH wave points out of the medium, whereas the slowness vector
of the reflected SH wave points into the medium, as shown in Fig. 2.
Consequently, the value of the z-component of the slowness vector of
an incident SH wave, SZ<I), is negative, whereas that of the reflected

wave, SZ(R), is positive.

The angle of reflection is defined as the angle between the
slowness vector of a reflected SH wave and the normal to the plane
boundary where the reflection occurs. Similarly, the angle of inci-
dence is defined as the angle between the slowness vector of an inci-
dent SH wave and the normal to the plane boundary, as shown in

Fig. 2. Therefore, the angle of reflection of a reflected SH wave is
bg = tan 1(s,(R)/s (R)) (17)
and the angle of incidence of an incident SH wave is
bg = tan"1(s,(D) /-5, (1)), (18)

It follows from Eqs. (5), (16), (17) and (18) that the angle of inci-

dence is equal to the angle of reflection, as shown in Fig. 2.

12
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4. Amplitude Ratio of Reflected Wave to Incident Wave

The amplitude ratio of the reflected SH wave to the incident SH
wave can be computed from the boundary condition on the stresses,
Eq. (4). Assume an SH wave of unit amplitude travelling in the plane
x = 0 is incident on the plane boundary at the origin, as shown in
Fig. 2. The shear stress, rxz(I), associated with the incident SH

wave on the plane boundary can be obtained from Eqs. (3) and (6) as

rxz(I) - iwCaasz(I) . (19)

Similarly, the shear stress, rxz(R), associated with the

reflected SH wave on the plane boundary is

14z R) = 1waA(R)c,,s, (R), (20)

It follows from Eqs. (10), (16), (19) and (20) that the amplitude of

the reflected SH wave is

AR o 1, (21)

Therefore, the amplitude ratio of the reflected SH wave to the inci-

dent SH wave is negative one.

13



5. Balance in Epnergy Flux Normal to Plane Boundary

The balance in energy flux normal to the plane boundary must be

satisfied and is expressed as [3]

D+ 5,® -0 (22)

where FZ(I) and FZ(R) are the components of the energy fluxes of the

incident and the reflected SH waves along the z axis, respectively.

The component of the energy flux associated with an SH wave

along the z axis is [4]

F, = Cyualuls, . (23)

It follows from Egqs. (16), (21) and (23) that the sum of the z-compo-
nent of the energy flux of the incident SH wave and that of the re-
flected SH wave is equal to zero. Accordingly, the requirement for
the balance in energy flux perpendicular to the plane boundary where a

reflection occurs, Eq. (22), is satisfied.
The z-componénts of the energy flux of an incident SH wave of

unit amplitude and the reflected SH wave, Eq. (23), in the semi-

infinite transversely isotropic medium are shown in Fig. 4, exclusive

14




of the radian frequency w, as functions of the angle of incidence with
the numerical value of the elastic constant C4, given in [1] for the
unidirectional fiberglass epoxy composite shown in Fig.l as Cyy =
4.422 x 109 N/m2. The balance in energy flux normal to the plane
boundary, Eq. (22), is also shown in Fig. 4, which is independent of

frequency.

15



ACOUSTO-ULTRASONIC NON-CONTACT INPUT-OUTPUT CHARACTERIZATION OF FIBERGLASS

EPOXY COMPOSITE PIATE

It has been shown [l] that the unidirectional fiberglass epoxy
composite shown in Fig. 1 may be modelled as a homogeneous trans-
versely isotropic continuum. For the axes shown in Fig. 1, the iso-
tropic plane of equivalent continuum lies in the midplane of the plate
[1]. A cartesian coordinate system (X, y, z) is chosen so that the x-y
plane is the isotropy plane; thus, the upper and lower surfaces of the
plate are at z= h/2 and z= -h/2, respectively, where h is the plate
thickness. The properties of the equivalent continuum model of the

unidirectional fiberglass epoxy composite plate are [1]

h = 0.1m

C11 = 10.581 x 107 N/m2

Cip = 4.679 x 109 N/m?

C13 = 40.741 x 109 N/m? (24)
Cy3 = 4.422 x 109 N/m?

Cup = 3.243 x 109 N/m?

1850 kg/m3

©
]

Non-contact transmitting and receiving transducers are located on
the same face of a fiberglass epoxy composite plate specimen, as shown

in Fig. 5. The unidirectional fiberglass epoxy composite plate spe-

16




cimen is considered as a plate of thickness h and of infinite planar
(x-y) extent. The input electrical voltage to the transmitting trans-
ducer is V;(t) and the output electrical voltage from the receiving
transducer is V,(t) where t represents time. The transmitting trans-
ducer converts an input electrical voltage into a stress, whereas the
receiving transducer converts a stress associated with stress waves
travelling.in the plate into an output voltage. In the following ana-
lysis, only the SH waves are traced. The SH waves which are generated
by the transmitting transducer located above point O experience mul-
tiple reflections at each face of the plate, and then reach the
receiving transducer located above point M, as shown in Fig. 6. Since
the isotropic plane lies in the midplane and is parallel to both the
top and the bottom faces where multiple reflections occur, the angle
of reflection of the reflected SH wave is equal to the angle of inci-
dence of an incident SH wave for each reflection at each face of the
plate. Accordingly, the SH wave travelling from the input O to the
output M may be considered as waves propagating in a semi-infinite
transversely isotropic medium and travelling to point M’ as if there

were no bottom face, as shown in Fig. 6.

1. Delay Time and Phase Velocity

Let the input O and the output M lie in the y-z plane. Assume

the number of reflections at the bottom face experienced by the SH

17




wave in travelling from the input O to the output M is n, as shown in
Fig. 6. With respect to the z axis, the angle of incidence of the SH
wave at each face of the plate is 4, and the total distance travelled

by the wave is R,. From the geometry in Fig. 6,

§ = tan~1(f/2nh) (25)

where £ is the separation distance between the input O and the output

M, and
Ry = £/sinéd. (26)
The delay time t,, for the wave to reach the receiving transducer is
tn = Rp/C1(8) (27)
where C(d) is the directionally dependent phase velocity of the SH
wave, and which for the unidirectional fiberglass epoxy composite
plate is [1]

Cr(8) = [(065sin20 + 044c0320]1/2 (28)

where C44, Cgg and p are given by Eq. (24).

18




The phase velocity C; as a function of the angle of incidence 4
is shown in Fig. 7. The delay time is then computed when the number of
reflections n at the bottom face of the plate is equal to 10, 100, 300
or 500. The numerical results are shown in Fig. 8 where the delay time
tn is plotted as the ordinate, and the dimensionless quantity £/h is

plotted as the abscissa for values of zero to 300.

2. Displacement Detected By the Receiving Transducer

The displacement detected by the non-contact receiving trans-
ducer above point M, radiated by the transverse transmitting trans-
ducer, is assumed to be equivalent to the displacement at point M',
associated with the SH wave propagating in a semi-infinite trans-
versely isotropic medium. Except for the reflection coefficients at
each face (to be discussed later), the displacement is computed as if
there were no bottom boundary, as shown in Fig. 6. The shear stress
at point M’ is approximated by the far-field asymptotic solution for
large R, of an infinite transversely isotropic medium subjected to a

harmonic point load.

Now consider an infinite transversely isotropic medium in which
the z axis of a rectangular cartesian system O(x,y,z) is the zonal
axis of the medium and the x-y plane coincides with the 1isotropic

plane, as shown in Fig. 9. The equations of motion including the

19



body force are [5]

Txx,x XY,y + Txz,z + pX = pu,tt

Xy, X + TVy,y + Tyz,z + pY = pv,tt

Txz,x + Tyz,y + T2z,z + pZ = pw,tt

(29)

(30)

(3D)

where 7, (¥, s = x, y, z) are the normal (r = s) and shear (r = s)

stresses with respect to’the chosen coordinate system O(x, y, 2); u,

v and w are displacement components of a point in the medium along the

X, y and z axes, respectively; X, Y and Z are the components of the

body force along the x, y and z axes respectively; p is the density; t

is time; and "," denotes partial differentiation with respect to the

variable which follows.

If we differentiate Eq. (30) with respect to x and Eq.

respect to y, we find upon substitution of the resulting equations and

using the appropriate stress-strain relations, Eq. (1), that

Cuy
P

C
A,tt --—%é-(A,xx + A,yy) + Azz + Y,x - X,y

where A = v,x - u,y.

20
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i r———

For a harmonic point load at the origin, we take body forces of

the form

X = X 8(x)6(y)6(z)e"1ut
. (33)
Y = Y 8(x)8(y)6(z)e 1wt

Z = Z,6(x)6(y)6(z)e"Twt

where §(r) (r = x, y, z) are the Dirac delta functions and X,, Y, and
Z, are the magnitude of the respective point body forces. A can be

expressed as a threefold Fourier integral [5]

[
A(x,y,z,t) = JJJ X(Sx,Sy,Sz,t) exp(iw(Sxx+Syy+Szz-t))dSXdSdez (34)

-

where

[}
X(Sx,Sy,Sz,t) - 1/81;3 JJ A(x,y,z,t) exp(iw(-Sxx-Syy-Szz+t)}dxdydz.
o0

Similarly, Y,x and X,y can be expressed as threefold Fourier integrals

-]
¥,x = iwSy J[J Y expliu(Sxx+Syy+S,z-t))dS,dSydS,
-a0

(35)

-
X,y = iwsy [JI X exp{iw(Sxx+Syy+Szz-t)}dedSdez
- -]

21



where

X = 1/8x3 JJ[ X8 (x)6(y)6(z)e vt

exp(iw(Sxx+Syy+Szz-t))dedSdez
- Xo/81r3
and, similarly,

Y = Y,/8%3; Z = 2o/8n°.

It follows from Eqs. (32), (33), (34) and (35) that

_ 1(Sx¥o - SyXo)
A = (36)
873wG(Sy, Sy, Sz)

where G(Syx, Sy, Sz) = Cge/p(Sx? + Sy2) + Cuu/pS;? -1.

Therefore, G(Sy, Sy, S;) = 0 represents the slowness surface for

an SH wave by comparison with Eq. (14). As a result of Eqs. (34) and

(36), A beconmes

@

18, Y -15X,
A(x,y,z,t) = o
873wG(Sy, Sy, S;)

-

exp(iw(Sxx+Syy+Szz-t))dsdedez (37)

22




The asymptotic solution at large distance from the point load is

obtained by applying the theory of residues, the method of stationary

phase, and the radiation condition {5] as

10(5,*Y, - 5,*X.)

27R| VG| (|Kg|)1/2

Ax,y,z,t)~ exp(iw(Sx*x+Sy*y+Sz*z-t)) (38)

where (S *

x*' Sy , Sz*) are the points on the slowness surface for an SH
wave, G (Sx' Sy’ Sz) = 0, where the normal is parallel to the OP
direction; R is the distance from the origin O where the point load is
applied to the point of interest P in the medium; VG is the gradient
of G (S4, Sy, S,) and |VG| is the magnitude of the gradient of G(S4,

Sy, S;) and is expressed as

|vG|] = [G,S4 + G,Sy + G,5,}1/2 (39)

y

x*' Sy*, Sz*) of the slowness surface for

and is evaluated at points (S
an SH wave, G(S,, Sy, S;) = 0, where the normal is parallel to the OP
direction; K; is the gaussian curvature of the slowness surface for an

SH wave and is expressed as

23




Kg =

2

(625, + G%s, + G%s,)

y

2 2
Z(G,5,(G,S4Sx G,SySy-G,S4S

ySy y)

+ 2G,S4 G,Sy(G,SxSz G,SySz-G,SxSy G,S;5;)) (40)

where £ is the sum with respect to cyclic permutation of Sg, Sy and

S,, and (IKGI)]'/2 is the square root of the magnitude of the gaussian

curvature of the slowness surface, G(Sy, Sy, S,) = 0, and is evaluated
*

at points (Sx*, Sy , Sz*) of the slowness surface where the normal is

parallel to the OP direction, as shown in Fig. 9.

The displacement component along the x and y axes, u and v, due
to an SH wave can be obtained by direct integration of the definition
of A in Eq. (32), in conjunction with pages 14 and 15 of [6] and is

asymptotically expressed as

*
M

2nR (5, *2 + 5,*2)|v6] (kg |)1/2

2 *o *
Sy %Xy - Sy Sy Y,

U(X,Y,Z,t) -

* * *
exp(iw(Syx + Syy + S,z - t) (41)

*a * *9
S FS ¥Ry + 5.0,

y

v(x,y,z,t) =~
2nR(8,*2 + 5,*2)|vG] (|Kg|)1/2

* * *
exp{iw(Syx + Syy + S,z - t)

24
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It is known from the definition of A in Eq. (32) and Eq. (37)
that SH waves have no contribution to the displacement component along

the z axis, w.

However, it should be noted that there is only one point on the
slowness surface, G(Sg, Sy, S;) = 0, where the normal is parallel to a
given direction OP. This is because the slowness surface for an SH
wave 1s a spheroid, Eq. (14). Consequently, if (x, y, z) are the
coordinates of a given point in the medium, there will be only one SH
wavefront passing through it corresponding to a point (SX*, Sy*, Sz*)
on the slowness surface where the normal is parallel to the given

direction. Note that in this analysis, it has not been necessary to

use Eq. (31).

3. Directivity Function

The shear stress, ry,, associated with SH waves reaching the

point M' in Fig. 6 is given from Eqs. (1) and (41) as

1C440S7" (Sy* 2Ky - Sx*Sy™Y,)

Tz (X,y,2,t)~
% 27R(S, 2 + Sy*2)|VG|(|KG|)1/2

exp(iw(Sx*x + Sy*y + Sz*z - t)) (42)

25



The directivity function Dgy of the shear stress, ry,,
associated with the SH wave is determined from the amplitude of the

shear stress in Eq. (42) by setting X, = Y, = R = 1;

R CAQSZ*ISy*z - Sx*Sy*lw @3
SH =
27 (S, ¥2 + sy*2)|vc|(|1<C|)1/2

Since the point 0 and the point M’ in Fig. 6 are located in y-z
plane, the evaluation of the directivity function Dgy is simplified by

setting Sy = 0 in Eq. (43).

Due to axial symmetry with respect to the zonal axis, the z
axis, of the transversely isotropic medium, the value of the directi-
vity function Dgy thus obtained holds for all values of Sy.
Therefore, it follows from Eq. (39), (40) and (43) that

*
Cahwsz C66 1/2

Cus
Dgy = — | ¢ 5,92 + (— 5,72 (44)
4xCeg/p(Chy/p) / P P

The polar diagrams for the directivity function Dgy of the shear

stress, 7 associated with the SH waves travelling in the unidirec-

Xz
tional fiberglass epoxy composite are obtained from Eqs. (24), (25),
and (44) at frequencies of 0.75, 1.50 and 2.25 MHz, and are shown in
Fig. 10, where the angle of incidence 4, given by Eq. (25), is used to

determine the direction in which the value of a point (0, S *, Sz*) on
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the slowness surface where the normal is parallel to the given direc-

tion is thus obtained.

4, Assumptions on the Transducers

The non-contact transmitting transducer in Fig. 5 is assumed to
transform an electrical voltage into a uniform shear stress; however, the
non-contact receiving transducer in Fig. 5 transforms a displacement into
an electrical voltage. The approach which follows is similar to that

given in [7].

If an input voltage of amplitude V and frequency w is applied

according to

Vi(t) = Ve-iwt (45)

see Fig. 5, the stress ¢ that is introduced into the specimen by the

non-contact transmitting transducer is
o(t) = Fl(w)Ve'i(wt +41) (46)
where Fj(w) is the transduction ratio for the transmitting transducer

in transforming a voltage to a stress and ¢1 is a phase angle. 1In

Eqs. (45) and (46), the harmonic character of the signals is expressed
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in the complex notation where i= J-1 and only the real parts of these
and subsequent equations should be considered. Thus, the amplitude T

of the applied force is defined as
T = F(w)V. 47
Similarly, if a stress wave producing a displacement component U
and frequency w that is detected by the non-contact receiving trans-
ducer is defined as

u(t) = Uelwt (48)

the output voltage from the non-contact receiving transducer, see

Fig. 5, is

Vg (t) = Fp(w)U e~ 1wt + ¢3) (49)

where Fy(w) is the transduction ratio for the non-contact receiving
transducer in transforming a displacememt to a voltage, and ¢9 is a

phase angle. Thus, the amplitude V/ of the output electrical voltage

is

V = Fy(w)U. (50)
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The characteristics of F1(w) and Fy(w) are unknown except that the

dimension of the product Fy(w)Fy(w) is [kg/m2 . secz].

5. Steady-State Qutput Voltage Amplitude due to Multiple Wave Reflec-

tions in Plate

Since only the SH waves travelling in the y-z plane are consid-
ered in Fig. 6, it follows from Eqs. (26), (39), (40) and (41) that
the amplitude of the hypothetical displacement at point M’ is Uy’, and

is defined as

(Chumt/? s, 1
Uy = (51)
27 Ry (C11-C12)

where T represents the magnitude of the shear stress generated by the
non-contact transmitting transducer along the direction perpendicular
to the line connecting the point 0 and the point M in Fig. 6 and is

equivalent to X, in Eq. (41).
)

However, with the bottom boundary present, the wave is reflected
a total of (2n-1) times, as shown in Fig. 6. Thus, the amplitude of
the displacement at point M is Uy, and is obtained by modifying
Eq. (51) as

2n-1
UM = Qsusy Um’ (52)
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where Qgusy is the reflection coefficient of SH waves to SH waves, and

its value is -1, as given by Eq. (21).

The amplitude of the output voltage from the non-contact receiv-

ing transducer is V’ and can be obtained by combining Eqs. (50),

(51)and (52) as

2n-1 N

Fp(w) Qsysy (Caup)/? s,* T

V' - (53)
2r Ry (C11-C12)
Substitution of Eq. (47) into Eq. (53) gives
2n-1 «

F1(@) Fp()Qsysy (Ca4r) /2 8%V

V' - (54)

2x Ry (C11-C12)

Introducing the SH wave attenuation constant a of the fiberglass

epoxy composite and a possible electrical signal amplification factor
K, Eq. (54) can be written as

2n-1

K F1() Fp(w) QgysH (Caup)1/? $;* v evoRn
V' =

(55)
27 Rn (Cll-Clz)

Eq. (55) gives the output voltage amplitude from the non-contact

receiving transducer due to an input voltage amplitude V at the non-

30



contact transmitting transducer when the SH wave path has included n
reflections from the bottom face of the fiberglass epoxy composite

plate specimen, as shown in Fig. 6.

3




DISCUSSION AND CONCILUSION

In the acousto-ultrasonic input-output characterization of the
unidirectional fiberglass epoxy composite plate, the angle of reflec-
tion of the reflected SH wave is equal to the angle of incidence of
the incident SH wave for each reflection at either the top or the bot-
tom face of the plate. This is due to the fact that the isotropic
plane is parallel to either face of the plate. However, if the paral-
lelism between the isotropic plane and the plane boundaries where
reflection occurs does not exist, the angle of reflection is not equal
to the angle of incidence. 1In such a case, the use of a semi-infinite
transversely isotropic medium, neglecting the existence of the bottom
face of the plate (except for the cumulative reflection coefficients),
to compute the delay time t, and the directivity function Dgy becomes

inappropriate.

It is observed from Fig. 8 that an increase in the number of
reflections n from the bottom face of the plate results in a minor
increase in the delay time t, at each value of dimensionless separa-
tion £/h. For a given plate thickness h and a given separation dis-
tance £ between the transmitting transducer and the receiving trans-
ducer, an increase in the number of reflections n results in a
decrease in the angle of incidence #, as given by Eq. (25), thereby

increasing the travelling distance R,, from Eq. (26). The phase
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velocity Cq of an SH wave in the unidirectional fiberglass epoxy
composite increases with decreasing angle of incidence # as shown in
Fig. 7. The increase in the travelling distance R, is partly offset

by the increase in the phase velocity C; with an increase in the

number of reflections n. This accounts for the minor increase in the

delay time given by Eq. (27). On the other hand, in an isotropic
medium, the phase velocity of a stress wave is directionally indepen-
dent. Thus, the increase in the delay time t,, caused by an increase
in the number of reflections n is solely attributed to the increase in
the travelling distance R, in an isotropic plate. Therefore, it is
concluded that the directional dependence of the phase velocity of a
stress wave travelling in a transversely isotropic medium has a sig-
nificant effect on the delay time when conducting acousto-ultrasonic

testing.

Now, consider the case of a given number of reflections n. An
increase in the separation distance £ results in an increase in the
travelling distance R,, as shown in Fig. 6, and an increase in the
angle of incidence 6 given by Eq. (25). The increasing angle of
incidence # results in the decreasing phase velocity Cy, as shown in
Fig. 7. Consequently, the delay time t, increases sharply as a result
of the increasing separation distance £ for a given number of reflec-
tions n, as shown in Fig. 8. However, as the separation distance Z

approaches infinity , the phase velocity approaches a limit. Thus,
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the increase in the delay time t, is due solely to the increase in the

travelling distance R,, which is similar to the isotropic medium case.

An examination of Eqs. (41) shows that the y-component displace-
ment v associated with an SH wave travelling in the y-z plane, Sy = O,
is zero and the x-component displacement associated with an SH wave
travelling in the y-z plane, Sy = 0, is attributed solely to the
x-component of the applied point load. In other words, the non-
contact receiving transducer is unable to detect the displacement com-
ponent along the line connecting the transmitting and the receiving
transducers by tracing SH waves in the plate. Further, the only
detectable displacement component which is perpendicular to the normal
to both faces of the plate and to the line connecting the transmitting
and the receiving transducers (that is, the u displacement) becomes
non-detectable if the shear stress introduced by the non-contact
transmitting transducer is in the direction parallel to the line con-
necting the transmitting and the receiving transducers, regardless of
how large the stress is. Accordingly, to maximize the displacement
detected by the non-contact receiving transducer, the transmitting
transducer should be placed such that the shear stress generated by it
is in the direction perpendicular to the line connecting the transmit-

ting and the receiving transducers as shown in Fig. 11.
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This theoretical investigation provides a step forward in the
quantitative understanding of acousto-ultrasonic non-destructive eval-
uation (NDE) parameters such as the stress wave factor (SWF) in trans-
versely isotropic media. It also provides the potential for assisting
in the development of more efficient and more revealing NDE schemes

utilizing wave propagation.
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Laminge

Fiber
Direction

Fig. 1 Unidirectional fiber reinforced composite modelled
as transversely isotropic medium.
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4

Slowness vector L}
of incident SH
‘wave

Slowness vector
of reflected SH
wave

>y

Fig. 2 Coordinate system (x,y,z) in analysis of single reflection
problem at stress-free plane boundary of semi-infinite
transversely isotropic medium; z=0 is plane boundary
where single reflections occurs, z< 0 is free space, and
x=0 is plane of incidence.
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Fig. 9

Schematic illustrating harmonic point load exciting
an infinite transversely isotropic medium, where xy
is isotropic plane in cartesian coordinate system
defined by (x,y,z).
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Fig. 11

Direstion in which shear stress generated
by transmitting transducer will resultin
maximum displacement detected by the
non-contact receiving transducer by
tracing SH waves

—

/ - -
- Receiving
-~ transducer

Transmitting
transducer

Schematic illustrating maximization of displacement
detected by non-contact receiving transducer by placing
transmitting transducer such that shear stress generated
by transmitting transducer is in direction perpendicular
to line connecting transmitting and receiving transducers.
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