22,027 research outputs found

    Ultrasonic attenuation as an indicator of fatigue life of graphite/epoxy fiber composite

    Get PDF
    The narrow band ultrasonic longitudinal wave velocity and attenuation were measured as a function of the transfiber compression-compression fatigue of unidirectional graphite/epoxy composites. No change in velocity was detected at any point in fatigue life. For specimens fatigued at 80% of static strength, there was generally a 5% to 10% increase in attenuation, however, this increase does not appear to be a satisfactory indicator of fatigue life. On the other hand, there appears to be a correlation between initial attenuation (measured prior to cycling) and cycles to fracture. Initial attenuation as measured at 1.5 MHz and 2.0 MHz appears to be a good indicator of relative fatigue life

    Ultrasonic nondestructive evaluation of impact-damaged graphite fiber composite

    Get PDF
    Unidirectional Hercules AS/3501-6 graphite fiber epoxy composites were subjected to repeated controlled low-velocity drop weight impacts in the laminate direction. The degradation was ultrasonically monitored using through-thickness attenuation and a modified stress wave factor (SWF). There appears to be strong correlations between the number of drop-weight impacts, the residual tensile strength, the through-thickness attenuation, and the SWF. The results are very encouraging with respect to the NDE potential of both of these ultrasonic parameters to provide strength characterizations in virgin as well as impact-damaged fiber composite structures

    Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Get PDF
    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials

    Constitutive acoustic-emission elastic-stress behavior of magnesium alloy

    Get PDF
    Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission

    Acoustic emission spectral analysis of fiber composite failure mechanisms

    Get PDF
    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens

    Pattern recognition characterizations of micromechanical and morphological materials states via analytical quantitative ultrasonics

    Get PDF
    One potential approach to the quantitative acquisition of discriminatory information that can isolate a single structural state is pattern recognition. The pattern recognition characterizations of micromechanical and morphological materials states via analytical quantiative ultrasonics are outlined. The concepts, terminology, and techniques of statistical pattern recognition are reviewed. Feature extraction and classification and states of the structure can be determined via a program of ultrasonic data generation

    Application of homomorphic signal processing to stress wave factor analysis

    Get PDF
    The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel p times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with p, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed

    Stress waves in an isotropic elastic plate excited by a circular transducer

    Get PDF
    Steady state harmonic stress waves in an isotropic elastic plate excited on one face by a circular transducer are analyzed theoretically. The transmitting transducer transforms an electrical voltage into a uniform normal stress at the top of the plate. To solve the boundary value problem, the radiation into a half-space is considered. The receiving transducer produces an electrical voltage proportional to the average spatially integrated normal stress over its face due to an incident wave. A numerical procedure is given to evaluate the frequency response at a receiving point due to a multiply reflected wave in the near field. Its stability and convergence are discussed. Parameterization plots which determine the particular wave whose frequency response has maximum magnitude compared with other multiple reflected waves are given for a range of values of dimensionless parameters. The effects of changes in the values of the parameters are discussed

    Ultrasonic attenuation of a void-containing medium for very long wavelengths

    Get PDF
    Ultrasonic longitudinal through-thickness attenuation in an isotropic medium due to scattering by randomly distributed voids is considered analytically. The attenuation is evaluated on the assumption of no interaction between voids. The scattered power is assumed to be entirely lost, thus accounting for the ultrasonic attenuation. The scattered power due to the presence of a void is described in terms of the scattering cross section of the void. An exact solution exists for the scattering cross section of a spherical void. An approximate solution for the scattering cross section of an ellipsoidal void is developed based on the so-called Born approximation commonly used in quantum mechanics. This approximate solution is valid for k sub p a sub i 1, where k sub p is the wave number of the incident longitudinal wave and a sub i is the largest dimension of the void. It is found that the shape of the void has negligible effect on the scattering cross section and that only the volume of the void is important. Thus, it is noted that in cases where k sup p a sub i 1, the exact scattering cross section of a spherical void having the same volume as an arbitrarily shaped void can be used for evaluating ultrasonic attenuation
    corecore