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ABSTRACT

Steady-state harmonic stress waves in an isotropic elastic plate excited

on one face by a circular transducer are analyzed theoretically. It is assumed

that the transmitting transducer transforms an electrical voltage into a

uniform normal stress at the top face of the plate. To solve the boundary

value problem, first the radiation into a half- space is considered. This

introduces longitudinal (P) and shear (S) waves into the plate. Then,

reflections are considered successively at the bottom and top faces of the
t

plate. Each reflection produces both P and S waves for each incident P or S

wave.

A separatecircularreceivingtransducer,alsolocatedat the top face

of the plate, is considered. It is assumed that the receiving transducer

produces an electrical voltage proportional to the average spatially

integrated normal stress over its face due to an incident wave.

The asymptotic behavior of the frequency response at a receiving point

due to a multiply reflected wave is given. It is found that a receiving point

observes an incident wave asymptotically as a plane wave which propogates and

reflects in the direction of the multiply reflected ray constructed

geometrically using Snell's Iaw. The far field condition, for which the

asymptotic solution is valid, is also discussed. This condition suggests that

although the thickness of the plate may be small, the waves which reflect

sufficiently many times do satisfy the far field condition.

A numerical procedure is given to evaluate the frequency response at a

receiving point due to a multiply reflected wave in the near field. Its

stabilityand convergence are discussed. Also, exponential decay is introduced



_V

to account for materialattenuation.

Calculationsare done for aluminum plates. It is found that the

numerical procedure becomes unstable for h/kI(I.6where h is the thicknessof

the plateand >'I is the P wavelength.

Parametrizedplotswhich determine the particularwave whose frequency

response has maximum magnitude compared with other multiplyreflectedwaves

are given for a range of values of dimensionlessparameters. The effects of

changes in the values of the parameters are discussed.



1 INTRODUCTION

An ultrasonictesting(UT) parameter calledthe stresswave factor(SWF)

was recentlyintroducedby Vary et al. [1,2] for nondestructive evaluation

(NDE) of materials. In the SWF configuration, separate transmittingand

receivingtransducersare coupled to the same face of the test structure and

the number of oscillationsexceedinga preselectedvoltagethreshold(or some

modificationsthereof[3])in the output signal,due to an input pulse having

a broadband frequency spectrum, is definedas the stresswave factor.Williams

and Lampert [3] indicateda correlationbetween the SWF and the attenuationin

carbon fibercompositesby showing that as the residualstrength decreases due

to impact damage, the SWF decreases and the through- transmissionultrasonic

attenuation increases. Williams et al. have also shown that the initiat

through- transmission longitudinal attenuation can be correlated with the

compression fatigue life [43 and the flexural fatigue life rs] of carbon fiber

composites.

Unlike conventional pulse- echo testing [6] where nonoverlapping

reflected wave echoes are analyzed, the SWF is also valid for the analysis of

overlapping echoes.

Although the SWF has been generallyused to characterizemicrostructural

defect statesof materials, it may also be used to detect cracks and

delaminations by couplingseparate transmittingand receivingtransducersto

the same face of the test structure.The output in such a SWF configuration

may be significantlyaffectedby cracks orientedperpendicularto the faces of

the structure,which are otherwise difficultto detect by most IX/DEmethods.

An important step in any quantitativeultrasonicIqDE procedure is the



analysis of the stress wave transmission chracteristics of the test structure

through which the transmitting and receiving transducers communicate. The

ultrasonic input- output characteristics of the S%;F configuration containing

thick isotropic elastic plates are studied in [7] theoretically and

experimentally. It is assumed that the transmitting transducer transforms an

electrical voltage into a uniform normal stress on the plate and vice versa

for the receiving transducer. The asymptotic value of the normal stress is

calculated for an isotropic elastic half- space subjected to a uniform

harmonic normal stress applied to a circular region at its surface, using the

results of Miller and Pursey [8]. The top surface of the plate is assumed to

coincide with the surface of the half- space and the bottom surface of the

plate is assumed to be at a depth within the half- space equal to the plate

thickness. Then the radiated stress waves are traced within the plate by

considering reflections at its top and bottom faces. Reflection coefficients

for plane waves are used assuming that the thickness of the plate is so large

that the bottom face of the plate is in the far field of the transmitting

transducer and the asymptotic spherical waves are nearly plane at the point of

reflection.

The purpose of this study is to extend the analysis for thick plates

given in [7] to plates of any thicknesses; in particular, to plates whose

thicknesses are smaller than the far field distance of the transmitting

transducer.

One way to address the boundary conditions which are imposed by the

transmitting transducer at the top face and the boundary conditions at the

stress- free bottom face is to expand the radially propagating plate waves

which are derived by the nonlinear Rayleigh- Lamb frequency spectrum [9]. Such



an approach would be especiallyusefulat low frequencieswhere the thickness

of the plate is of the order of the longitudinalwavelength because a small

number of radiallypropagatingwaves would be excited.

Another way to approach the problem, which is more practical at high

frequencies where the thickness of the plate is much larger than the

longitudinalwavelength, is to consider the radiation from the transmitting

transducer into a half- space and then to introducesuccesive multiply

reflectedwaves at the bottom and top faces of the plate. Each multiply

reflected wave whose potential is expressed in integralform is calleda

generalizedray. This method is often calledthe generalizedray theory and is

discussed in [I0].Transient waves generated by a variety of internal and

surface forces in a platehave been analyzed by Pao and Gajewski £I0],and

Ceranoglu and Pao [11]using this approach.



2 STRESS WAVES IN THE PLATE

Z. l Governinq Equations and Boundary Conditions

Consider an isotropic elastic plate of thickness h, bounded by the z=O

and z=h planes and eztending infinitelyin the z and y directionsas shown in

Fig. i (a).As done in [7], it is assumed that the transmitting transducer

transforms an electrical voltageinto a uniform normal stresson the plate.

The cartesian coordinates x,y,z; the cylindrical coordinates r,_,z; and the

spherical coordinates R,e,_ are shown in Fig. t (b).

Then, the boundary conditions on the top face of the plate, including

those imposed by the transmitting transducer, for steady-state conditions can

be written as

at z=O :

-i_t

e for O_r_a

= 1 (I)
zz 0 for r>a

I

o" = o" = 0
rz z_

where O'zz, O'rz, O'z_ are the components of the stresstensor in the cylindrical

coordinates[12],a) is radian frequency, t is time, i3x[_-, and a I is the

radius of the transmittingtransducer.The amplitudeof o" is taken as the
zz

unity since only the frequency response of the plateis of interest. Because

the bottom face of the plateis stress-free, the boundary conditionsthere

can be statedas



at z=h :

o" = o" = o" = 0 (2)zz rz z_!

Because of the circularityof the excitation,there is axial symmetry

about the z axis and so the displacement component in the _ direction

vanishes. Then, the theory of wave propogation suggests that the following

uncoupled wave equationsare satisfiedwithin an isotropicelasticsolid[123

I 82o

w2° = (3)2 2
c 8t
I

! 82_

2qj _ 2 2 (4)

c 2 8t

where _2 isthe laplacianoperatorand forcylindricalcoordinateswith axial

symmetryisgivenby

82 I 8 82
_2 = -- + ---- + -- (5)

2 28r r 8r 8z

• and q, are uncoupled longitudinal(P)and shear (S)wave potentials; and cI

and c2 are the P and S wave velocities,respectively.The components of the

displacementand stressfieldscan be found from the potentials and the

relationsare summarized in Table I.

The complete solution requires finding the wave potentials which satisfy



either eqn. (3) or eqn. (4) such that the superpositions of the stresses

generated from these potentials via the relations given in Table 1 satisfy the

boundary conditions at z=0 and z=h as given by eqns. (I) and (2),

respectively.

2.2 Half-space Solution

At the first stage of the solution, the boundary conditions at z=h are

ignored. Then the problem reduces to that of radiation into a half- space.

Using Hankel transform techniques, Miller and Pursey [8] solved this problem

for the boundary conditions given in eqn. (1). That solution is reviewed in

C13] with the notation used in this study and is given by

= Ep(_) J0(2_ _) exp(2vri_ I-_ 2) d_ (6)

_P )_kl >'I )"1

and

- ES(_) J0(2_rg _1 ezp(2_i-- k2-g 2) dg (7)

_S _k I kl kl

where _p and _S are the P and S wave potentialswhich satisfy eqns. (3) and

(4), respectively. The shear modulus of the platematerialis _; >'I is the P

wavelength and is given by _,l=2WCll_; _ is a dimensionless integration

variable introduced in the Hankel transform;J0 denotes a Bessel functionof

the firstkind and of order zero;k=Cl/C2;Ep(_) and ES(_) are called the

excitationfunctionsfor the P and S waves, respectively,and are given by



( 2_ 2 _k2 ) al
Ep(g) - Jl(2_g -) (81

G(_L) >,
1

Jl__ 2 a

ES(g) = -2i J1(2"ng -I ) (9)
G(_ ) k 1

where

G(_) = (2_2-k2) 2 2 J 2 Jk2 2+ 4_ 1-_ -_ (10 )

and J isa Besselfunctionof the firstkindand oforderone.
I

The potentialsgivenin eqns. (6)and (7)and the potentialswhich are

introducedbelowallhave a steady-stateharmonictimedependence,indicated

by exp(-i_Jt);thisharmonictime dependence function is dropped from the

expressionsforconvenience.

The excitationfunctionsin eqns. (8)and (9)have a poleat_ =_R where

the denominatorfunction,G(_), givenin eqn. (10) vanishes when gR=cR/cl

where cR isthe Rayleighwave velocity._R isthe so- calledRayleighpole.

2.3 ReflectedWaves

The superpositionsof the stressesgenerated from the potentials¢Dp and

cDS satisfy the boundary conditionsat z=0 only. So, in the so- calledfirst

stage the boundary conditionsat z=h are violated.In the second stage, new

waves which are called reflectedwaves are introducedso that the boundary

conditionsat z=h are then satisfied.This requiresintroducinga set of P and

S waves for each P and each 5 wave initiatedin the firststage, which is due

to mode conversion [14].These new waves are calledthe PP and P5, and SP and

SS waves and their potentialsare denotedby _pp and _PS' and _SP and _55'



respectively. In particular the potentials CDpp and _P5 are introduced to

cancel the stresses o" and cr at z=h generated from the potential _)pZZ rZ

correspondingto the reflectionof the P wave at the stress- free plane

boundary at z=h.

The superpositions of the stresses generated from the potentials

introducedin the firstand second stages satisfythe boundary conditions at

z=h only. In the thirdstage, additionalreflectedwaves are introducedso

that the boundary conditionsat z=0 are then satisfied.Again, this requires

introducing a set of P and 5 waves for each P and each S wave introducedin

the second stage and they are calledthe PPP and PPS, and PSP and PS5 .....

for a totalof eight. In particularthe potentialsof the SPP and SPS waves,

_SPP and _SPS' respectively,are introducedat z=0 to cancel the stresses O'zz

and O'rz generated from the potential(DSp, correspondingto the reflectionof

the SP wave at a stress-free plane boundary at z=0.

The superpositions of the stresses generated from the potentials

introduced in the first, second and third stages satisfy the boundary

conditionsat z=0 only. The procedure of adding new reflected waves at each

successive stage can be continued as above. At each stage, a new set of P and

S waves for each P and each S wave introducedat the previousstage is added.

This process is represented in Fig. 2 as a binary tree. At each stage, the

boundary conditionsat one face are satisfiedand the boundary conditions at

the other face are destroyed. However, as shown below, the waves introduced

for increasinglylargenumbers of stages, namely the waves with very large

numbers of reflections,vanish. Thus, the superpositionsof all the stresses

generated from the wave potentialsfrom the firststage to infinity satisfy

the boundary conditions at both z=0 and z=h simultaneously.Also, again as



shown below, the waves with increasingly higher numbers of reflections are

observed at a receivingpointwith increasinglylargertime delays;and thus

considering a finite number of waves is sufficient for the exact analysis of a

transientresponse up to a fixedtime.

In studying the wave propogationin a multi- layered elastic medium,

Spencer [14] analyzed multiple reflections and transmissions of axially

symmetric waves at plane boundaries.Followingthe analysisgiven in [14], in

general the potentialof a particularwave which has a unique chain of P's and

S's can be shown tobe [13]

2_ral f_ r h t__g 2
- "]0 E(g) O(g) dO(2"rrg_) expgZ_i£_((p-m 1)

_n/ j >'1 kl kl

z

+(s-m2) Jk2-g2))+m -- _b2-g2]_ dg (11)
I

where • denotes the particularwave potentialand is calledthe j-th waven/j

potential at the n-th stage. The unique chain for the particular wave

potentialis found by convertingthe decimal integerj to the correspondingn

bit binary number and then assigning P's for O's and S's for l's in the binary

number, n can take values from 1 to _o, and j can take values from 0 to 2n-1.

For example,the chainforthe wave whose potentialisrepresentedby _415 can

be found as follows.First,j=5 isconvertedto the n=4 bitbinarynumber

0101, and then P's for O's and S's for l'sare assigned in the binary number,

which resultsin the PSPS wave.

E(g ) in eqn. (11) is called the excitation function and is equal to

Ep(g)or Es(g)if_nlj isconstructedfromthe half-spacesolutiona)p or _)S



I0

(that is, if the chain for _n/j started with a P or an S wave), respectively.

O(_) is called the product of the reflection coefficients and is given below.

The numbers p and s represent the tote_lnumber of P's and S's in the chain,

respectively, and n=p+s, m I is equal to I if the last reflection occurs at z=0

(that is, if n is odd) and if _n/j is a P wave potential (that is if the chain

ends with P). Otherwise m I is zero. m 2 is equal to I if n is odd and if _)n/j

is an S wave potential (that is, if the chain ends with S). Otherwise m 2 is

zero. m is equal to +I or -I if the last reflection occurs at z=0 or z=h (that

is, if n is odd or even), respectively, b is equal to I or k if _) is a P or
n/j

S wave potential (that is, if the chain ends with P or S, or equivalently if j

is even or odd), respectively.

The product of reflection coefficients is given by

Q(_) = [Opp(_)]. r_ Qps(_) ] ri_Qsp(_)]

J4 _5+J6
CQSS(_ )] (-I) (12)

where it' J2' J3" and J4 are the total number of P to P, P to S, S to P, and S

to S reflections, respectively; and J5 and J6 are the total number of P to 5

and S to P reflections only at z=h, respectively. Opp, Ops, OSp , and OSS are

the P to P, P to S, S to P, and S to S reflection coefficients, respectively,

and are given by
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4_ 2 _I__ 2 Jk2__ 2 _ (2_2_k2) 2

Qpp(_) = QSS(_) = (13)
C(_)

4_ _1-_ 2 (k2-2_ 2)

Ops(g ) = (141
G(_)

-4_ _k2-_ 2 (k2-2_ 2)

QSplg) = (15)

Jl' J2' J3' J4' J5' and J6 can be found from the specific wave chain. For

example for the PPSSPS wave, they are 1, 2, 1, 1, 1, and 0, respectively. Also

for this particular wave E(g)---Ep(_); p=3 and s=3; ml=0 and m2=0; m=-I and b=k.

So, as discussedabove the superpositionsof the stressesgenerated from

the potentials introduced in the first stage as the half- space solution and

all the possible reflected wave potentials introduced in the successive stages

satisfy the boundary conditions at both z=0 and z=h as given by eqns. (1) and

(2),respectively.
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3 FRE(:tUENCY RESPONSE OF THE PLATE

In general,a receivingtransducer located on the plate observes a

physical quantify such as stress, strain, or displacementgenerated from

incidentwave potentials.In this study, the S%]Fconfiguration is considered

and it is assumed that a circularreceivingtransducer,which is separate from

the transmitting transducer, is locatedat the top face of the plate.As in

£7],it is assumed that the receiving transducer produces an electrical

voltage proportional to the normal stress,_ , generated from an incidentzz

wave potentialaveraged over its contact area. The receiving transducer

thereforeobserves only the reflectedwaves at z=h which are introducedat the

even numbered stages.

It should be noted that the existenceof the receivingtransducer is not

taken into consideration in See. Z, where stresswaves in the plateare

studied.Then, the question arises as to whether or not the receiving

transduceraffectsthe waves in the plateat the point of reception.The waves

in the plate are affectedby the presence of the receivingtransducerafter

they reach the receivingtransducer.Thus, incident waves on the receiving

transducer are not affected, but waves that reflect at the receiving

transducercontact area and continue to travelare affected because stress-

free boundary conditionsare not satisfiedon the receivingtransducercontact

area. In thisstudy, only the incidentwaves on the receivingtransducerare

consideredand thus the resultsin See. 2 are used.

Since a steady-stateharmonic excitationhaving the magnitude of unity

is considered and the plate is assumed to be linearand time invariant,the

quantityobserved by the receivingtransducer may be called the frequency
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response of the plate, or simply the frequency response. The quantity observed

at a point on the receiving transducer contact area is called the frequency

responseat a pointand isgivenby

n=_,9=J

= > j H n=2 4,6 ..; j=2n-I (16)
H

nlj ' ''

n=Z,j=0

where Hnlj is the frequency response at a point due to the j-th wave at the n-

th stage. After droppingthe steady- state term ezp(-i_t),Hn/j is equal to

the normal stressO'zzgenerated from the wave potential_)n/jby the relations

given in Table I and evaluatedat the receivingpoint at z=0. It is given by

[13]

Hnl J = 2m--_'IkJ0 E(g) O(g) V(g) J0(2_g -)>, exp[2mi--(p,>,l-g 2I l I

+s Jk2-g 2) dg 417)

where V(g ) is called the response function and is equal to the response

functions for the P wave Vp(g), or for the S wave VS(g) if the potential_n/j

is a P or S wave potential,respectively,and where

V (g) = 292-k 2 (18)P

V (g) = -2ig 2 _k2-g 2 (19)
S
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Only even values of n must be considered in eqn. (17)and all subsequent

equationsin this paper.

The frequency response of the plate, H, or the frequency response of the

platedue to the j-th wave at the n-th stage, n/j' can be found by averaging

H or Hn/j, respectively, over the contact area of the receiving transducer.

For a receiving transducer of radius a2, it can be shown that [131

2 _4+a 2
- 2 H r _(r) dr (20)

n/j _a -a n/j
2 2

where

I_ [r2(242 2 2 42 2 211/2- +2a 2 -r )-( -a 2 )

o<(r) = tan _ ff (21)
2 2+42

r -a 2

and 4 is the distance between the transmitting and receiving transducer axes.

The integrals in eqns. (17)and (20) cannot be evaluated analytically in

closed form. Thus they are evaluated approximately as discussed in the

following sections.
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4 ASYMPTOTIC EVALUATION

The integralin eqn. (17)can be evaluatedasymptoticallyby the method

of stationaryphase [15].Accordingly,the followingcan be derived[13]

a E(g ) Q(g ) V(g ) ig(_ )I 0 0 0 0
H = -2.Ti-- e (22)
nlj

>'i "J (rl>'l)_0 Ig"(_0)l

where G o is the stationary point and which is defined explicitly below, g(g)

is the phase function and is given by

h jg(g) = 2_-- (p I-_2 2__2+ s k ) + 2._---_ (23)

>'I >'I

I I denotesthe "magnitudeof"and g"(g) isthe secondderivativeOf g(g)and

is given by

2
d g -h p s

g,,(g) _ _ + (2q)
dg 2 >" 11_g2) 3/2 (k2_g2) 3/2I

The first derivative of the phase function vanishes at the stationary

point, requiring that the stationary point satisfies the following nonlinear

equation

Pg 0 s_ 0 r
+ - (25)

Jl-g 2 ,,l k 2-g 2 h
0 0
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For the interpretationof the equationsabove, the multiply reflected

ray corresponding to the PSSP wave is constructedgeometricallybetween the

origin 0 and a receiving point M in Fig. 3 (a) as an example. A P ray

emanating from the origin at an angle e 1 reflects as an S ray at N1 , then as

an S ray at N 2 and finallyas a P ray at N3 and then propagates to M.

Reflection angles are determined by Shell'slaw [12]and thus all the P and S

rays have reflectionangles of e I and @2' respectively,and are relatedby

sin e 1 = k sin 02 (26)

Using the ray geometry and eqn. (26), it can be shown that

gO = sin 01 = k sin 02 (27)

For unmixed waves, namely for eitherp=0 or q=0, g 0 in eqn. (25)can be

evaluated by substituting eqn. (27)into eqn. (25)and using trigonometric

functions. Otherwise, numerical techniques such as the method of bisection

[16]can be used.

Further, it can be shown that the totaldistancestravelledby the waves

as P and S rays, R I and R2, respectively,are given by
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ph
R - (28)

I

-g 2
0

skh
(29)R -

2

2_g 2
0

andthecorrespondingtimedelayisgivenby

R1 R2 g(go )
t - + - (30)

p,s c c1 2

Notice that the waves with common p and s, simply the waves with p,s,

have the same time delay and the time delay appears as the linearityconstant

in the phase functionwhich linearlydepends on frequency. For example the

waves with p=3, s=1 are the PPPS, PFSP, PSPP, and SPPP waves. The frequency

response at a point due to the waves with p,s, which is denoted by _{ , canp,s

be found simply by the superpositionof the correspondingfrequency responses.

The frequency response of the platedue to the waves with p,s, H , is thenp,s

the average H over the contact area of the receivingtransducerand can be
p,s

found similarlyby eqn. (?.0).

Also, it can be shown that the reflectioncoefficientsgiven by eqns.

(13),(14),and (15)are equal to the corresponding reflection coefficients

for plane waves [12]when they are evaluatedat the stationarypoint given by

eqn. (27).This suggests that a receiving point observes an incident wave

asymptotically as a plane wave propogatingand reflectingat the bottom and

top faces of the plate in the ray directionsas constructedabove.
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The denominator functionin eqn. (22)indicatesgeometrical attenuation

for a given combination of r,h,p, and s. It can be visualized by considering a

hypothetical multi- layered half-space as shown in Fig. 3 (b). It is assumed

that the layers which are identical to the original plate under study and are

bonded together in a hypothetical way such that an incident wave in one layer

produces no reflectedwaves but produces transmitted longitudinaland shear

waves in the next layer and the transmissioncoefficientsare the same as the

reflection coefficients as if the incident wave reflects at a stress- free

plane boundary. At the n-th layer in such a medium, only the waves introduced

at the n-th stage in the binary tree in Fig. 2 could exsist. The top layer can

be thought of as the original plate and each subsequent layer can be thought

of as the image of the layer immediately above it. A receiving point H in the

original plate and the images of it H2, H4, H 6 .... are shown in Fig. 3 (b)

The PSSP ray between the originand M 4 is also shown. So, the geometrical

attenuationin eqn. (22)can be observed as due to the spreading of the waves

with the distance from the source, and wave mode conversions during

transmissions at the boundaries of layers. It can be shown that for unmixed

waves, eqn.(22) representsa sphericalwave whose magnitude is a functionof

directivityand decreases with the reflectioncoefficientOpp(g0)=Oss(g0) each

time it passes a layer, and the resultsobtained in [7] can be recovered.

As observed from Fig. 3 (b)qualitatively,although some image points

may be in the near field of the source, at sufficientIy large distances from

the source there are always image points in the far field. The value of the

frequency response at a point as given in eqn. (2Z)is approximatelyvalidfor

points in the far field.

It should be noted here that in the limit as r approaches zero,
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Jl(2"ng0al/_l)/ _ approaches _ral/O_l_'_), and thus eqn. (22) is finite for

r=0. Also, it can be shown that in the limit as n goes to infinity, H in
nl_

eqn. (22) goes to zero.

4.1 Near Fieldand Far Field

The analogy to the acoustics problem considered in [7] is extended to

obtain a condition for the asymptoticevaluationin eqn. (22) to be a valid

approximationto eqn. (17).The pertinentacousticsproblem is that of a rigid

piston vibratingin a rigidbaffle.The exact formulationin integralform and

the asymptoticsolutionfor this problem are given in £17].They are similar

to eqn. (17)and (22),respectively,for unmixed waves.

The exact solutionfor the radiationpressurealong the pistonaxis can

be obtainedand is given in £18].The amplitudeof the pressure along the axis

(z axis in Fig. I (a))fluctuatesnear the piston and eventuallymonotonically

approaches the asymptoticsolution.The near field and far field distances

defined for such a problem are reviewed in [7]. The conditionfor the

asymptoticsolutionto be validis statedas

z>'01a2 > KF(a/>'0'Ea) (31)

where z is the distancebetween the originand the receiving point on the

piston axis; _'0 is the wavelength in the acousticmedium; a is the radius of

the piston;and K F is the far fielddistanceconstant which depends on the

dimensionless parameters, a/k0, and an acceptableerror, E . E is definedasa a

the error between the asymptoticpressure amplitudeP and the exact pressureas



2O

amplitude P relative to P
ex ex

= (P - F ) / P (32)
Ea as ex ex

Calculated values of KF for a range of its independent variables are

given in Table Z. Notice that for fixederror, KF becomes constant for a/>,0

much largerthan I. Also the errordecreases with increasing K F for fixed

a/>`0 .

The conditionfor eqn. (22)to be validfor unmixed waves can be stated

by analogy to the acousticsproblem, z>,0/a2 in eqn. (31) is replaced by

Rlkllal2 or RZ>,Z/al2 and the value of KF for specificvalues of al/X1 or al/>,2

and Ea is taken from Table 2. >'2is the 5 wavelength and is equal to >'l/k.

For mixed waves, the analogy may be extended in a way, which also

covers the conditionfor unmixed waves as specialcases. Let the conditionbe

2
(R1>'1+ R2>'Z)lal > KF(al l>`av,Ea) (33)

where >` is the average wavelength defined byav

>" = (pk + s >" )l(p+s) (3q)av 1 2
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5 NUMERICAL EVALUATION

The integralin eqn. (17)can also be evaluated by numerical methods

[16]. The integral is in the complex _-plane because the integrandhas

singularitiesat the branch points_=I and _ =k, and at the Rayleighpole _=_ R

on the integrationpath from 0 to _ [19].The pole is of order n=p+s because

allthe reflectionfunctionsgiven by eqns. (13), (14), and (15) have the

Rayleigh pole of order I as well as the excitationfunctionsgiven by eqns.

(6)and (7).The introductionof appropriatebranch cuts and indentations of

the integrationpath on the realaxis near the singularpoints is discussedin

£8]. Consistentwith the branch cuts introduced,the principalvalues of I_-_ 2

and _k2__ 2 should be considered. Thus the exponential function in the

integrandin eqn. (17)is purelyoscillatoryfor 0_<g<I; the part associated

with ,[I-_2 monotonically decays, and the part associatedwith _k2-_ 2 is

oscillatoryfor I<_<k;and monotonicallydecays for_)k.

The integrationintervalfrom _=0 to 0_ is dividedinto subintervals and

as indicatedin Table 3, eitherthe trapezoidalrule or Gauss quadrature £163

is used for each subinterval.The integrationis stopped at some large value

of _=_k' where _k)k, which is justifiedby the factthat the integrandis

exponentiallydecaying for _)k. The trapezoidalrule is chosen because it is

the simplest method which works well for oscillatoryintegrands£163.The

Gauss quadrature is chosen in the vicinityof the singularpoints because it

does not require the evaluation of the integrandat the end points of the

interval,thus avoidingevaluationsat the singularpoints.

The convergence and stabilityof the procedures above depend on the

exponential decay for _ >k. As shown below, ifthe decay is not sufficiently
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rapid, the effect of the Rayleigh pole is observed as an instability.

Increasing h/X l, p, or s increases the rate of the exponential decay, thus

improving the convergence and stability; however, increasing p or s also

increases the power of the pole, thus promoting instability. Thus, there is a

compromise associated with increasing p or s in order to achieve a dominance

of the exponential decay over the algebraic instability. For a given set of p

and s, there is a minimum h/Xi, (h/>,i)min, below which the procedure above

gives unstable results. By examining the exponential decay and using the fact

that _g2-1 > _g2-k2 for g)k, it can be shown that for the cases with fixed

n=p+s the case with p=0, s=n gives the largest (h/Xt)mi n

The integration over the receiving transducer contact area as given in

eqn. (20) can also be performed numerically using the trapezoidal rule.
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6 EFFECT OF LOSSES

So far, it has been assumed that the platematerialis perfectlyelastic

and allenergy is conserved during wave propogation as only geometrical

attenuation due to spreading and wave mode conversionsis present. However,

wave propogationin real materialsis never entirelyconservativeas a certain

amount of energy loss always occurs during propagationand reflections. The

mechanisms of these lossesare discussedin [20]. In this study, it is assumed

that attenuationis small and the effectof the attenuationcan be introduced

by multiplyingeqn. (17)by exp[-((xlRl+ o_2R2)] where c<I and o<2 are the

frequency dependent attenuation constants for P and S waves, respectively

£20].c<1 and o<2 are materialpropertiesand have the units of nepers per

centimeter[63.
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? RESULT-_ AHD DISCU.gSIOHS

The frequency response of the plate in the S%/F configuration is

formulated as the superpositionof the frequency responses due to reflected

fields.The response of the plateto an arbitrary pulse is thus the the

superposition o£ the responses due to reflectedfieldsto that same pulse,

simply reflections,and can be found by Fourieranalysis[21].

The frequency responses due to the fieldswith common p,s have the same

phase which depends linearly on frequency; and thus the corresponding

reflectionswhose superpositionis calledthe reflection with p,s have the

same time delay in the transientresponse. If the plate is sufficientlythick,

then the time difference between the time delays of the significant

reflectionswith different D,s may be so large that each significant

reflection can be observed in the output separatelyas in [7].%]henthe plate

becomes thinner, the reflectionsoverlap and it is no longer possibleto

ob£ain informationabout an individualreflection directly in th_ output.

However, it may be possible to do so by using homomorphic signalanalysis

[I,.2,22].

Informationabout one reflectionis usefulbecause itis a prerequisite

to analyzing the entireoutput quantitativelyand also because it may be far

easierto interl_ret the changes in individual reflectionsdue to defectstates

of the plate. This is especially true if the reflectionis in the far field,

where a receivingpoint observes the incidentfieldas a plane wave. Although

the thicknessof the platemay be small, reflectionswith large enough p or s

satisfythe far fieldconditiongiven by eqn. (34).So, informationin the far

fieldmay be obtainedfrom some portionof the output signal.
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The frequency response at a point due to the fieldwith p,s H depends
p,s

on the dimensionlessparameters p, s, k, o<I>,I, ocZ>,Z, al/>,I, h/>,l,and r/h. The

frequency response of the platedue to the fieldwith p,s H also depends
p,s

on the dimensionlessparameters p, s, k, o<i>,I, o<2>,z, al/>,I, h/>,I , t/h, and

a2/aI. Unless otherwise stated, it is assumed that the platematerialis

lossless,namely o<I=c<2=0, in the followingcalculations. Also, aluminum for

which k=Z.02 is consideredas the plate material.

The behavior of [H2,01 , [H6,0 [ , and [H3,1[ versus h/>, I is plotted in

Figs. 4 Ca), (b), and (c), respectiveIy, for the values of al/>, I of 3 for all

cases and for r/h of 0, 0, and 2.5, respectively.The magnitudes calculated

using the asymptotic formula in eqn. (23) are indicated by the filledsquares.

The magnitudes calculated by evaluating the integral in eqn. (18) by the

numerical procedures described in See. 5 are indicated by solid curves.

The asymptoticmagnitude in Fig.4 (a)shows sphericalwave behavior,

and thus it startsto "blow up" for small h/Y,1,namely, near to the source.

The numerical magnitude has approximatelythe same value as the asymptotic

magnitude for large hfAI (forh/>,I)14.4with the criteriongiven by eqn. 434))

and it is oscillatoryfor smallerh/k I. The numerical magnitude also "blows

up" at (h/_,1)min=0.48because of the effectof the Rayleighpole as discussed

in Sec. 5. Similardiscussionscan be given for Figs. 4 (b)and (c).

As discussedin Sec. 5 (h/>,l)min is controlledby p and s. For the cases

with fixedn=p+s, the case with p=0, s n gives the largest (h/kl)min

(h/>,l)min has been evaluatedfor the cases with increasings and fixedp=0,

ai/>,i=3,r/(sh)=0.7.It increaseswith increasings and gives a peak value at

aproximately 1.6 for s=10 and then decreases as suggested by the discussions

on the stabilityof the numerical procedure in Sec. 5. The critical h/>,
I'
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(hlY,1)cr,which is the largest(hl>,1)min among all the cases, is approximately

1.6. (h/>,l) limitsthe applicabilityof the formulationsin this study. Forcr

h/kt<(h/>,l)cr,expanding the platemodes derived by Rayleigh- Lamb frequency

spectrum, which is more suitablefor low frequencies,may be used.

Some parametrized plots which determine the particularfieldwhose

frequency response has the maximum magnitude compared with other reflected

fields are given in Figs. 5-8. These plotsmay also be used in the spectral

analysisof transientsignalsto estimatethe particularreflectionwhich has

the maximum magnitude compared with other reflections at a particular

frequency. The reflectionwith the maximum magnitude is importantbecause it

has the maximum signalto noise ratioin an experiment.

Since the transmitting and receiving transducersconsidered in this

study are longitudinal,the reflectionswith only P waves, namely with s=0,

will be dominant in the output [7,13];and thus only the fieldswith s=0 are

considered. Again, k=Z.02 is used, but the resultscan be generated for other

materials.

In Fig. S (a),a point receiver,namely a2/al=0; a losslessmaterial,

namely c<I>,I=0;and al/>,1=lare considered.The abscissaand the ordinate are

h/>,I and _/aI, respectively.Then allthe parameters in this analysisexcept p

are fixedfor each point in the (h/k1,_laI) plane.

Suppose the magnitude of the frequency response at a particularpoint

due to the fieldwith P=Pmax is maximum among allthe possiblefieldswith p=2

to 0_. Pmax willbe found to be the same for each point in a region bounded by

solid curves in Fig. 5 (a) (and is indicatedin each region. For example,

Pmax=4 for h/>,1=6,_lal=5.

In generatingFigs. 5 8, discretepointswhere h/>,I and _/aI change from
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2 toq0 and2 toI0,respectively,withincrementsofI havebeen considered.

Then I H I (actuallyI H
p,0 P,01 for a point receiver)has been calculatedfor

each point by changing p from 2 to a sufficiently large number, in increments

of Z. The asymptotic formula given by eqn• (23) has been used if the condition

given by eqn. (34) has been satisfied with the value of KF for Ea=5"/. in Table

2. The numerical procedure discussed in Sec. 5 has been used otherwise.

t H I may have diverged with increasing p at the beginning, but it hasp,O

finally converged to zero due to geometrical attenuation as discussed in Sec.

4. Thus, the sufficiently large number for p has been set by checking the

convergence and when IH I has become negligible(20dB down) compared withp,0

the maximum magnitude. The curves dividing the regions having the same p
max

have been then generated by linear interpolation.

Similar plots are given in Figs• 5 (b) and (c) where only al/>, 1 as 3 and

5, respectively, is changed. For the plots in Fig. 6, again Iossless material

but a2/a1=t are considered, and al/>,1 is 1,3, and 5 for Figs. 6 (a),(b), and

(c), respectively. In Fig.7 the conditions are the same as in Fig. S (b)

e_rcept0<1>'I is changed to 0.005 and 0.01 in Figs. 7 (a), and (b),

respectively• Similarly, the conditions in Fig. 8 are the same as in Fig. 6

(b)except o<I>,I is changed to 0.005 and 0.01 in Figs. 8 (a) and (b),

respectively.

There are severalobservationswhich can be made from these plots.

1. In the plots in Fig. 5, allthe fieldswith P=Pmax are in the far

• decreases with increasinghD,I and increaseswith increasing _/a1field Pmax

and allkI . As al/kI becomes largeror h/>,1 becomes smaller,changes in hi>,1 or

_/aI produce largerchanges in Pmax"

In order to understand these and the followingobservations,consider
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the hypotheticalmulti- layered half space in Fig. 3 (b)again, and consider

only the P waves in the medium. Then the fieldwith only P waves observed at

an image point M is the fieldwith p,s=0 observed at the receivingpoint M in
P

the originalplate as discussedin See. 4. Since the excitationwith al/kI is

longitudinalin the z direction,the fieldwith P waves only dies out at the

points locatedaway from the source. As discussedin Sec. 4, in the far field

it is a spherical wave whose amplitude is a functionof directivityand

decreases due to mode conversionseach time it passes a layer. The polar

diagrams of the directivityfunctionfor severalal/kI are given in [7].It is

mainly controlledby the functionf(u)=IJl(u)/ulwhere u=Z_g0alfk I and _0=sin

e I . The propertiesof f(u)is discussedin [23].For sufficientlylarge al/kI,

the directivityfunctionhas a main lobe where it has a maximum at el=0 and

decreases to zero, and beyond which it has successiveside lobeswhere it

reaches a maximum and decreases to zero with increasinge I. The maximums in

the side lobes decrease with increasingangle e{ and they are much smaller

than the maximum at (91=0. The number of side lobes increases with increasing

al/_,,I and the main lobe is confinedto a smallerangle. Thus, the decrease in

the directivityfunction with increasing angle becomes faster.For small

all>,I, the directivityfunctionhas only a main lobe and it never becomes

zero.

Now notice that an image point M in Fig. 3 (b)is located at a larger
P

distanceR I but at a smallerangle e I with increasingp. Then IHp,01 tends to

decrease due to largergeometricalattenuationbecause of the largerdistance

and largernumber of mode conversions, but also it tends to increase due to

the directivityfunctionbecause of the smallerangle with increasingp. So,

there is a compromise in the value of Pmax"
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As hl,'x.1 increasesor _laI decreasese I becomes smallerfor smallerp and

Pmax tends to decrease because of the directivityfunction.As al/>,I increases

the value of the directivityfunctionfor largerel, namely for smaller p,

becomes smallerand Pmax tends to increase.For smallerh/>,l,changes in h/A1

or _/aI produce largerchanges in e I and thus in the value of the directivity

function and Pmax" Also, for larger al/>,I, changes in h/>,I or _/aI which

accompany changes in e I produce largerchanges in the directivityfunctionand

thus in p
max

Let the fields with p,s=0 be in the far field for P>Pfar" From the

condition given in eqn. (34) it can be shown that Pfar increases with

increasing all>, I and decreasing h/k I or f/a I . Also as discussed above Pmax

increases with increasing al/k ! and _[a I, but with decreasing h/>, I . The

resultsshow that always Pmax)Pfar for the range of parameters considered in

Fig. 5. Notice that for decreasing f]al, Pmax decreases and Pfar increases.

Thus it is expected that for sufficientlysmall _]al, Pmax<Pfar. But this does

not happen for tlal>_ 2.

It can also be shown that @I for the fieldswith Pmax' which is denoted

by (@l)max, is in the main lobe of the directivityfunctionfor all the cases

considered in Fig. 5.

2. Similarobservationsas for Fig. 5 can be made for Fig. 6. The

conditions for Figs. 6 (a), (b),and (c)are the same as for Fig. 5 (a), (b),

and (c),respectively,except the receiveris such that azla1=1 instead of a

point receiver.It is observed from Figs. 5 and 6 that p tends to increasemax

for a21al=I compared with a2fa1=0.

For a21al>0, the complex frequencyresponse H is integratedover thep,0

receiving transducer contact area to find H and then IH 01 . Supposep,0 p,
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IHp,0 I is the average of IHp,01 over the receiving transducer

contact area. Also, suppose that IH I is the value of II-[ 01 evaluated atp,O 0 p,

the center of the receiving transducer. For IHp,0l _ll-[p,0I0' which can

be justified for the fields with G I in the main lobe, IHp,01 -<iHp,01 0 if

there is a change in the phase of H over the averaging area. It can be
p,0

shown that for smaller p the phase changes more over the receivingtransducer

contact area by considering that the imaginary point in M in Fig. 3 (b) is
P

located at a smaller distance and at a larger angle from the source, and thus

IHp,01 decreasesmore compared with IHp,01 . So, Pmax tends to increasefor

a2/al=l.

3. The conditionsfor Fig. 7 are the same as for Fig. 5 (b)except o(ik1

is 0.005 and 0.01 in Figs. 7 (a)and (b),respectively,insteadof lossless

material.As observed from these plots,Pmax decreases with increasing o(lY,I .

The plotswith attenuationshow irregularitiesfor largeh/kI and _/aI, where

Pmax does not necessarilydecrease with increasingh/>,1 or decreasing _/aI as

in lossless material. The regionswith irregularitiesmove towards smaller

h/Y,1 or _laI with increasing o<tY,t.

As assumed in Sec. 6, IH I decreases exponentially with the product of
p,0

the attenuation constant and the distance of the imaginary point M from the
P

origin in Fig. 3 (b). Thus, IH I with larger p decreases more with
p,0

increasing O<lkI . So, Pmax tends to become smaller with increasing O<lkI .

Although (eI) for the field with Pmaz is in the main lobe of themax

directivity function for o<1k1:0 in Fig. 5 (b), it may jump to the side lobes

for sufficientlylarge h/kl, _/kl, and 0<lkI , and irregularitiesappear as in

Fig. 7. While attenuation pushes Pma_ down, namely (_l)max up, (Gl)maX

approaches to the criticalangles where the directivity function is exactly



31

zero. Near these angles there are sharp changes in IHp,01 and thus Pmax jumps

to biggeror smallervalues.

4. The conditionsfor Fig. 6 (b),8 (a)and (b)are the same as for Fig.

5 (b),7 (a) and (b), respectively, except a21al=l instead of a point

receiver.

For a2laI=I, Pmax decreases with increasing o<I> Ì again but the

irregularitiesappeared for a point receiverdo not exsistany more. This is

because IRp,0 1 is not exactly zero near the criticalangles due to the

averagingover the receivingtransducercontact area and there are no sharp

changes.

5. Overall, Figs. 5-8 suggest that largerh/>,l,smalleraiD/,I, and for

attenuatingmateriallargera21aI increasethe stabilityof the output in the

SWF configuration in terms of the reflectionwith the maximum magnitude. The

stabilitymeans small changes in parameters produce small changes in the

output.
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8 CONCLUSIONS AND RECOMMENDATIONS

Steady-stateharmonic stresswaves in an isotropicelasticplate excited

on one face by a circular transducer were analyzed theoretically.It was

assumed that the transmittingtransducertransformsan electricalvoltageinto

a uniform normal stress at the top face of the plate. First,the radiation

into a half- space, which introducedlongitudinal(P)and shear (S) waves into

the plate,and then theirsuccessivereflectionsat the bottom and top faces

of the platewere considered to satisfythe boundary conditions.

A separate circularreceivingtransducer,also locatedat the top face

of the plate, was considered. It was assumed that the receiving transducer

produced an electricalvoltage proportional to the average spatially

integratednormal stressover its face due to an incidentwave.

The frequencyresponse at a receivingpoint due to a multiply reflected

wave was formulated in integralform and itsasymptoticbehavior was given.

The far fieldconditionfor the asymptotic solution to be valid was also

discussed. This conditionsuggested that although the thicknessof the plate

may be small, the waves which reflectsufficientlymany times satisfythe far

fieldcondition.

A numerical procedure was given to evaluatethe frequency response at a

receivingpoint due to a multiply reflected wave in the near field. Its

stability and convergence were discussed. Also, exponential decay was

introducedto account the materialattenuation.

Calculationswere done for aluminum plates. It was found that the

numerical procedure becomes unstable for h/>,l<l.6where h is the thicknessof

the plateand >'iis the P wavelength.
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Parametrizedplotswhich determine the particularwave whose frequency

response has maximum magnitude compared with other multiplyreflectedwaves

were given for a range of values of dimensionlessparameters in the analysis.

The effectsof changes in the values of the parameters were discussed.

This study is part of an overalleffortto develop quantitativeanalyses

of ultrasonic nondestructive evaluation parameters such as the stresswave

factor (SWF). The spectralanalysisof the SWF signalshould benefitfrom this

study. The parametrizedplotsgiven in this study or generated using the

results of this study may be used to estimatesome parameters such as the

materialattenuationor the effectiveradiusof the transmitting transducer

from the spectral analysis of the S_]F signal in terms of individual

reflections.

Finally,stresswave transmissioncharacteristicsof platesin the S%/F

configuration should be analyzed using the modal analysis(Rayleigh-Lamb

frequency spectrum) for small values of h/kI where the numerical procedure

given in thisstudy becomes unstable.
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TABLE 1 Oisplacements a and Stresses a in Isotro.oic Elastic Solid with Axial

Swnmetrv and Zero Rotational Dist_lacement C12].

From Longitudinal From Shear _Jave

Wave Potential _b Potential

8_ 32

r
3r ar 8t

2 2
aQ a • l a •

tJ s 2 2 2
az 3z €_ _tg

us 0 0

x a2_ a2o a3_

rr 2 2 2 2
€ at ar 3r az

t

X a2_ a2_ a a2_ l a2_

ss 2 2 2 2 2 2
€ I _t as 3z as c 2 3t

X _Z_ 2_ a_ 2_ 32_
+

_ 2 2
€ at r ar r _r _s

1

82_ a a2_ l _2_

rz 2 2 2
8r 8z 8r at c 8t2

o" o o
rJ

0 0
s_

a u r.ut.u s are the components of the dis;_lacement vector, and o'rr. a'zz. o'_.

errs. o'rj. °'z_r are the comoonents, of the stress tensor in the cylindrical
coordinat es.

b X and )_ are Lame' constants.
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TABLE 2 Calculated Values of KF for Analoq Acoustics
P_oblem.

KF

a/,_, For E =5% Fo= E =,3%
0 & a

0.2 II .4 18.2

0.4 6.2 10.0

I..0 3.8 _.8

2.0 3.2 5.0

3.0 3.2 4.8

4.0 3.0 4.8

5.0 3.0 4.8

7.0 3.0 4.6

1.0.0 3.0 4.6
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TABLE 3 Subintervals and Corresponding Nu=erical Integration
Methods Used to Evaluate the Integral in Eqn. (18).

Subinterval Numerical
Integration

From To Hethod

0 t-e a Trapezoidalb

1-e 1 Gauss €

1 14.e "

I_G k-• Trapesoidal

k-I k Gauss

k t '°
R

g R I 1.='_H+e "

1 1 2 "l t _g inc d Trapezoidal

1 2 1 3_-i 2,4 inc "
I#
°e
el

I k-t I k ='( k-I 4-_inc "

k • oe Neglect ed

a S<<l, typically •=,0.01.

b Number of steps is increased by powers of 2 and the

convergence is checked. When the integral converges

to a value with an acceptable error, typically to

within of 0.001, the integration is stopped.

€ Typically 8 point Gauss-Legendre quadrature is used.

d Typically, £. =1.
1no

• The integration is stopoed at _k when the integral

over the interval from _k-t to I k becomes negligibly

small, tyDicalIv smaller than 0.001.



41

_0 iwt for 0 < r-< a Ial a'zz = for r > a I

I ° 1 o
yt I

"xl
z r z

(a} (b)

Fiq. 1 Schs=_atics of (a) plats with axially sF_mttric excitation and

(b) coordinate systems.

Boundary Conditions
Stage Waves Satisfied Only at

I P S z=O

#
2 P S P S z:h

A A A
3 P S P S P S P S z=O

A AAAAAAA
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