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SUMMARY 

Repeated loading and unloading of a magnesium alloy below 

the macroscopic yield stress result in "continuous" acoustic emissions 

which are generally repeatable for a given specimen and which are 

reproducible between different specimens having the same load history. 

An AE/Bauschinger strain model is proposed to describe the unloading 

emission behavior. For the limited range of stress examined, loading 

and unloading stress delays of the order of 50 MN/mL are observed and 

they appear to be dependent upon the direction of loading, the stress 

rate, and the stress history. The stress delay is hypothesized to be 

the manifestation of an effective friction stress. The existence of 

AE/elastic stress constitutive relations is concluded which provides 

support for a previously proposed concept for the monitoring of elastic 

stresses by acoustic emission [ll. 



INTRODUCTION 

Acoustic emission (AR) refers to the generation and detection 

of strain waves that are produced in some materials as they undergo 

dynamic stresses. Most of the published work has been associated 

with deformation such as large-scale plasticity, crack initiation 

and crack propagation. Recently, a proposal by Williams and Lee [l] 

has shown that a characterization of the acoustic emission from 

macroscopically elastic metals could be utilized in a nondestructive 
* 

evaluation procedure for the determination of elastic stress states . 

That concept requires the acquisition of the AE activity during a 

specified perturbation of the original elastic stress state. Assuming 

the existence of a set of unique repeatable AE-stress constitutive 

relations, the proposal shows that information about the original 

stress state can be deduced. Thus, a major aspect of the development 

of this'concept is to establish the existence and the character of 

AR-stress constitutive relations for elastic stress states. 

Although most of the previous AR research has involved metals 

undergoing general macroscopic yielding, the recognition of some 

* 
Note that a qualified definition of "elastic" stress is used to 
denote stresses below the macroscopic yield stress since micro- 
plasticity often occurs well below the macroscopic yield stress. 
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AE/elastic behavior has existed for at least a decade. The occurrence 

of AE during the unloading of a metal is mentioned briefly by Schofield 

121. Because a metal is generally believed to behave elastically 

during the removal of a load, this aspect of AE research is particularly 

intriguing. In research on AE from various steels, Kerawalla [3] and 

Mitchell [4] found that unload emissions occur upon repeated unloading. 

Kerawalla suggested that the unload emissions are due to the sudden 

movement of dislocation lines or tangles, but did not attempt to 

further specify the mechanism. The conclusion was made, however, that 

a great deal of the irreversible emission which occurs upon loading 

is associated with the yield-drop phenomenon in steel, and so, is due 

to the rapid breakaway of dislocations which are pinned by solute 

atoms of carbon and nitrogen. This conclusion appears to be in 

agreement with the AE studies on copper, magnesium, iron, aluminum, 

brass and steel by Fisher and Lally [5] who suggested that the 

emissions result from microscopic yield drops which are undetectable 

in usual tensile tests. 

Agarwal [6] made a fairly comprehensive investigation of the 

AE behavior of aluminum, some aluminum alloys, and steel during both 

loading and unloading. Expanding upon a suggestion made by Sedgewick 

[7], Agarwal proposed that the activation of Frank-Read dislocation 

sources of some critical length, dependent upon the sensitivity of 

the AE detection system, is the source of the loading emissions. 
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A subsequent article by Agarwal, Frederick and Felbeck [8] showed that 

it is possible to relate the AR activity on loading of aluminum to 

its microstructure by means of the Frank-Read source activation model. 

A source of the unloading emissions was not proposed. 

Sankar [9] investigated the unload emissions from various 

metals including aluminum, aluminum alloys, brass, magnesium and copper 

and found a correlation between these emissions and the extent of the 

Bauschinger effect in the metals. A later article by Sankar, Frederick 

and Felbeck [lo] showed that a larger Bauschinger strain is accompanied 

by greater unload emissions, and, so it was proposed that the emissions 

are due to the sudden spring-back of pile-up dislocations when the 

load is removed, since this is generally thought to be the source of 

the Bauschinger effect. Also, it was proposed that the small unload 

emission activity found in materials with a small Bauschinger strain, 

such as aluminum, is a consequence of their high stacking-fault energies 

and resulting ease of cross-slip, such that fewer dislocations are 

lying in their original slip planes and, thus, cannot spring back 

upon a reversai of stress. 

The two primary purposes of this paper are (1) to establish 

the existence of certain AR-stress constitutive relations for elastic 

stresses and (2) to emphasize the need for the standardization of 

AE equipment and techniques. If the former purpose is achieved, the 

latter need is automatically established because any constitutive 
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relations will depend upon the equipment and the techniques employed 

to obtain them. Although it is intrinsically a misnomer to state 

that AE-stress constitutive relations t will be equipment and technique- 

dependent, the relatively elementary state of current acoustic emission 

capability will undoubtedly make this the case for the near future. 

Thus, the results which are presented here must be interpreted in 

terms of the equipment and techniques used in the experiments. 

t Thus, in a strict sense, any relations obtained are "pseudo 
constitutive" relations. 
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EXPERIMENTAL EQUIPMENT, MATERIAL AND PROCEDURE 

The experimental equipment consisted of a hydraulic tensile 

loading device and acoustic emission detection (Acoustic Emission 

Technology) and display equipment. A schematic of the experimental 

system is shown in Fig. 1. The hydraulic loading device was designed 

such that the time-variation of the specimen load could be specified 

to give desired loading and unloading rates as well as maximum and 

minimum load values. These loading parameters were controlled by a 

feedback system as indicated in Fig. 1. Further details of the 

specimen grip assembly including specimen isolation and sensor 

mounting are shown in Fig. 2. A viscous couplant (ART SC-6) was 

used at the sensor-specimen interface and the sensor was held in 

contact by a force of 22 N which was exerted by the sensor loading 

spring. 

The emissions were detected by a PZT piezoelectric sensor 

(AC175) having a resonant peak at 175 kHz. The AR signal was band- 

pass filtered (125-250 kHz) and the total system amplification was 

maintained at 100 db. The minimum detectable signal by the system 

for a constant threshold voltage of 0.6 V (after amplification) 

corresponded to a sensor stress of 1.9 x 10 -9 MN/m2. Extensive 

details relating to the feedback parameters, system rates and loading 

capabilities, and system calibration are given in [ill. 
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The test specimens were made from a wrought magnesium alloy 

(AZ31B-F). The gage section of the specimens was a solid circular 

cylinder having a length of 7.62 x 10m2m and a diameter of 

7.62 x 10m3m. The heat treatment and some physical properties of 

the magnesium are given in Table 1. 

Table 1 

Heat treatment and some physical properties of 
magnesium alloy soecimens 

Material Magnesium 
(AZ31B-F) 

Heat Treatment 260°C 
for 20 min; 
air cooled 

Hardness Before Heat 
Treatment (Rockwell 
scales) 

'Hardness After Heat 
Treatment (Rockwell 
scales) 

0.2% Offset Tensile 
Yield Strength (MN/m2) 

Ultimate Tensile 
Strength (MN/m21 

RF=57 

RF=52 

183.4 

366 

-7- 



The experimental procedure may be described by the following 
. . 

set of statements: 

1. 

2. 

3. 

4. 

Load the the specimen for one hour to a stress. 
amax, which is-below the yield stress. The stress 
omax represents the maximum stress reached in the 
entire loading history. 

Unload the specimen to a lower stress, olower, 
for 10 set, then reload it to an upper stress, 
Oupper, for 20 sec. 

After repeating this 30 set cycle four times, the 
value of uupper is decreased, and four more unload-load 
cycles are performed. 

This procedure is repeated using successively smaller 
upper stress levels until no emissions are recorded. 
Then the procedure is repeated using successively 
larger upper stress levels until amax is reached 
again. 

Three types of tensile tests were conducted using the general 

procedure described above. These tests are characterized as follows: 

1. Full Unload Tests: “upper varies as indicated and 
alower is always zero. This type of test is illustrated 
in Fig. 3. 

2. Partial Unload Tests: aupper varies as indicated 
and "‘lower varies in accordance with olower = ou per - Ao, 
where Au is a stress increment that is maintaine ii 
constant throughout the test. 

3. Stress Rate Tests: A range of loading and unloading 
rates is used between aupper which is constant throughout 
the test and olower which is zero throughout the test. 

For all tests, the cumulative AE loading count (CEL) and the cumulative 

AR unloading count (CEU) were recorded. Also, the AR signals were 

observed on an oscilloscope which provided qualitative information. 
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RESULTS AND DISCUSSION 

I  

The &jor emphasis of the'results and discussion section 

is the presentation of experimentally reproducible AK/elastic 

stress constitutive behavior. Before presenting those results, 

however, a brief discussion of the AE which occurs during the initial 

loading as well as a description of "burst" and "continuous" emissions 

observed during the tests will be given. 

Characteristics of First-Load AE 

During the first loading of the specimen, prolific acoustic 

bursts of 2 to 7 volt amplitude (after 100 db amplification) are 

generated and continue for up to one hour if the stress is held 

constant at its maximum value. The cumulative loading emission 

count (CEL) versus time for specimen #l is shown in Fig. 4. If the 

specimen is unloaded while these emissions are occurring, the bursts 

stop. For tests conducted during time periods of the order of one 

hour, these bursts behave according to the so-called Kaiser effect. 

However, if the specimen is left at zero load for a week or more, 

loading it to a stress below urnax results in burst emissions, although 

the activity declines more rapidly than during the first load. 

The time-dependent character of the burst emissions suggests 

that a thermally activated process, such as creep, controls their 
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generation. This transient creep effect is often explained by an 

"exhaustion" theory whereby sources of slip, such as dislocations, 

encounter barriers which cannot be overcome unless an activation 

stress which is greater than the externally applied stress is imposed. 

The energy required to achieve the activation stress may be supplied 

by the inherent thermal vibrations in the crystal. Because there is 

a finite number of such slip sources, each with its own activation 

stress, the creep rate, which is determined by the probability of 

the sources being thermally activated, decreases with time as the 

sources with the lower activation stresses are used up, or "exhausted". 

One type of slip source which could be used to explain the burst 

emissions, and which is consistent with the mechanism proposed in 

[8] is the well-known Frank-Read dislocation mill. 

After the burst emissions have subsided at a given urnax, 

subsequent loading and unloading to stresses below u result in max 

a different type of emission. For these loading and unloading cycles 

the emission signal appears as a general rise of the inherent noise in t 

AE monitoring system. However, as discussed in [ll], these "continuous" 

emissions could be composed of many bursts of smaller amplitude 

occurring at a rate greater than l/~~ z 104/sec, where ~~ is the 

characteristic decay time of the sensor-amplifier system during 

"ring-down". Thus, the terms "burst" and "continuous" which are 

frequently used in AE terminology are dependent upon both the AE 

source and the AE monitoring system. 

:h 
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Full Unload Tests 

Following the loading sequence illustrated in Fig. 3, the resulting 

CEU and CEL versus (J 
upper 

for two magnesium specimens are shown in Figs. 5 
/ 

and 6. The mean (indicated by points) and the standard deviation (indicated 

by brackets) for four successive counts are plotted versus u upper * These 

values are plotted separately for the decreasing and increasing loading 

patterns where the arrows indicate the sequence of the tests. It is im- 

portant to note that sepcimens #l and #2 are different specimens from the 

same batch of material and that the specimens were mounted and tested 

on different days. 

Several significant comments can be made concerning Figs. 5 and 6. 

1. 

2. 

3. 

Although there are some differences between the plots for the two 
specimens, both the loading and the unloading emission count 
graphs are very similar for each type of test. 

The large standard deviations in the loading emissions (Fig. 6) 
at the highest upper stress level (a =u ) are a direct 
consequence of the,burst emissions w%&?occu!%enever the 
specimen is loaded up to CJ (If the stress is less than U 
the emissions cease as soo%%' h t s t e s ress on the specimen max' 

ceases to change.) 

The emissions are dependent upon the loading pattern; that is, 
they are less for a decreasing loading pattern than for an 
increasing loading pattern. 
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4. The dashed lines in Fig. 5 represent full unload tests for 
a smaller value of Urnax, where Urnax is the maximum stress 
in the entire post-heat treatment history of the magnesium. 
The loading emissions (Fig. 6) for this same Umx are 
erratic and are an order of magnitude less than the unload 
emissions. Thus, these emission characteristics are a 
function of the maximum stress in the magnesium's history. 

Most of the deviation observed in the unload and load emission 

counts at the higher stress levels less than u is due to an effect max 

illustrated in Fig. 7, which shows the EL and EU for repeated loading 

and unloading of a magnesium specimen between U = 0 and 154 MN/m2. 

Each point in Fig. 7 represents the cumulative count for one load or 

one unload. It can be seen that the counts vary slowly with the 

number of cycles and appear to level-off after about 30 cycles. 

Partial Unload Tests 

Fig. 8 shows the results of the partial unloading and loading 

tests on specimen i/2 for AU = 96.5 MN/m2. Although the same tests 

were performed on specimen #l, these tests are not presented because 

they show the same general trends [ll]. 

A question raised by the results shown in Fig. 8 is why do 

-both the loading and unloading cumulative emission counts for a given 

change in stress AU, decrease with an increasing upper stress level, 

U upper' If the total emission activity is assumed to be related to 

the Bauschinger strain 8, as suggested in [lo], an explanation oC 

these trends would depend upon how 8 varies with AU and u upper' 
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.Unfortunately-, most research pn the Bauschinger effect has 

involved plastic strains in excess of 0.1%. The. reasqn for using 

such large strains has generally been the difficulty involved in 

obtaining accurate measurements of the Bauschinger s,train 8, for 

plastic strains.below 0.1%. Some, of.the behavior observed for these 

large strains will be extrapolated into the small strain region with 

the understanding that the results obtained ,may be used to indicate 

trends only. 

Some of the parameters usually used to quantify the Bauschinger 

effect are illustrated in Fig. 9 which shows a typical stress-strain 

curve of a metal which exhibits this effect. up is a Vpre-stresslt 

imposed on the metal before reverse loading; f3 is the difference 

between the measured strain during unloading and the elastic strain 

which would result in a material not exhibiting the Bauschinger effect 

(dashed line); and u is the stress level at which this strain difference 

is measured. The stress U is usually taken to be a compressive stress 

whose magnitude is some fraction n, of the pre-stress; that is, 

u= -l-la . 
P 

The following nondimensional constitutive relationship 

between f3, u and u is proposed: 
P 

(B/Be) = f(u/up) g(up/uo> 

-13- 
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The function f(ff/op) describes the shape of the unloading curve of g 

versus u, normalized with respect to CJ 
P' 

for a typical unloading. 

The function g(up/oo) defines how the magnitude of f3 varies with the 

pre-stress 
"PY 

normalized with respect to some constant stress o . 
0 

BO 
is another normalizing constant which defines the actual magnitude 

of the Bauschinger strain for a given material. 

Fig. 10 illustrates some typical shapes of these functions 

which are based on experimental results [12-141. Let 

f(u/up) = (1 - (u/upqn (2) 

For n = 1 this results in a straight line and as n + m, the curve 

sags in towards the coordinate axes (curve A, Fig. 10 (a)). Although 

the exact shape of this curve is not known, especially for small 

pre-stresses, this general shape appears to be a good approximation. 

Also, note that for 0 < n < 1 the curve bows out from the origin, which 

does not appear to be a reasonable approximation [12-141. 

The variation of B with the pre-stress, u 
P' 

defined by the 

function g(Up/Uo>, has taken the approximate forms indicated by the 

curves A, B and C in Fig. 10 (b) through the work of Wooley [12], 

Buckley and Entwistle [13], and Deak [14], respectively. Both of 

latter two indicate that some minimum pre-stress, defined as oo, must 

-14- 
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be reached before the Bauschinger effect is observed. Thus, let 

+p/uo) = ( (up/uoP - lym (3) 

For m = 1 the result is a straight line (curve C), whereas for 

m > 1 the curve (curve B) bends down closer to the asymptote defined 

by the 45" line. As m + 0~ the curve approaches the 45" line (curve A). 

Again the exact value of m is not known for small o 
P' 

but this 

functional form appears consistent with the empirical results which 

have been referenced. 

To apply these assumed functional relationships to the results 

of the partial unload tests, let the pre-stress be the upper stress 

level; that is, u . u 
P upper 

; and let u = u - Au. 
P 

Combining these 

concepts with equations (11, (2) and (3) gives 

(B/80)m = (Ao/uoInm 1 - (u~/$)~] (u~/u~)~(~-') 
[ 

(4) 

Plots of (B/Bo)m. (u~/Au)~ versus (op/uo> for various values 

of n 2 1 and m 2 1 are shown in Fig. 11. Note that 
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1. For any values of n > 1 and m > 1 the shape of B versus U 
P 

for a given AU does not change appreciably; 

2. 8 is not defined for u < U : 
P 0 

that is, no Bauschinger strain 

is expected in this region; and 

3. For a given AU, B tends t o decrease with increasing u for 
P 

the larger values of u . 
P 

If the correlation is made, between B and ZEUS it can he 

seen than any of the curves in Fig. 11 for n > 1 indicates a decreasing 

emission count for increasing upper stress levels, as observed in the partial 

unload tests. In addition, a similar result is expected for the partial loading 

tests, except that the loading portion of the stress-strain hysteresis loop is 

used with the effective pre-stress equal to the lower stress level. 

Although this derivation is not a proof either that the Bauschinger 

effect is the cause of the unloading emissions or that the cumulative emission 

count is directly related to the Bauschinger strain, the similar trends observed 

do indicate some correlation between the proposed modeland the experimental 

results. In addition, due to the wide range of values of m and n for which the 

trends in the model apply, a range of forms of the functions f(u/u,> and 

g(Up/Uo) which are similar to those shown in Fig. l@ will result in the 

same trends. 
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Stress Delay and Stress Rate Tests 

Fig. 12 shows a typical chart recorder plot for an unloading 

test. A "stress delay" is observed in loading and in unloading, denoted 

by 'DL and 'Dus respectively. That is, the emission activity does not 

begin during either loading or unloading until a definite loading or 

unloading change in stress has occurred. Similar behavior has been 

reported for unload emissions in steel and aluminum [3,4 'and 61. The 

stress delays observed during the partial unload tests (Au = 96.5 MN/m21 

for both specimens i/l and iI2 in loading and unloading are shown in Fig. 13. 

The following observations about Fig. 13 are made: 

1. Ry far the most significant aspect is the close similarity 
of the results from specimens #l and #2. 

2. There appears to be a loading pattern dependency which is 
more pronounced for the unloading stress delay. 

3. The unloading stress delay displays a pattern which tends 
to decrease with decreasing u upper' 

4. The loading and unloading stress delays are approximately 
same magnitude for the range of u 

upper 
investigated. 

The direct importance of the stress delay to the trigger concepts in [ll 

strongly indicates the value of clearly defining the functional dependence 

of the stress delays upon u upper' U and the stress rate. max 
The stress delays for loading and unloading at various stress 

rates are shown in Fig. 14. There is a trend towards larger delays 

at lower stress rates. Also, at the higher stress rates, the stress 

delay for loading and unloading are nearly equal (although this may 
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be due, in part, to a system saturation effect [ll]). The increase 

in the stress delay at the lower stress rates may reflect the fact that 

although AE activity may begin at all rates after a constant stress 

delay, the signal does not exceed the threshold until some time later. 

Thus, at the lower stress rates where the total emission activity is 

generally smaller, this effect will manifest itself as a larger stress 

delay. 

The existence and behavior of the stress delay suggest that 

it is the result of an effective friction stress. Considering a 

dislocation under the influence of an externally applied shear stress 

'Al' and back shear stress ~~~ due either to a pile-up of other 

dislocations or to intersections with obstacles (for example, forest 

dislocations or precipitates), the total shear stress on the disloca- 

tion is 

(5) -CA1 - TB = Tf 

where -if is the effective friction stress. When the stress is reversed, 

reverse flow occurs when the stress on the dislocation becomes 

TA2 - TB = -Tf 

-18- 
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where 'A2 is the applied shear stress at which reverse flow occurs. The 

required change in the externally applied shear stress is 

TD = (TAl - 'CA21 = 2Tf . (7) 

Assuming flow will occur first in the most favorably oriented grains 

Tf 
1 1 =--'c =- 
2D 4 uD z 15 MN/m2 

9 
(8) 

where a typical value of 60 MN/mL has been taken (See Fig. 14.) 

A probable major contribution to the stress delay can be attributed 

to the resistance to dislocation motion due to solute atoms. The shear 

stress, T s t required to move a dislocation through the lattice of a 

solution hardened alloy can be estimated by [151 

4 L 
T3 1 
u =y 

2 c 
ct (In C14 3 [ 1 a 

where, tJ = shear modulus, 

E = lattice misfit parameter z (ra/rb)-1, 

r = solute atom radius, a 

rb = solvent atom radius, 

C = volume concentration of solute, 

a = a factor =: 0.5. 

(9) 
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‘rat, It’ 2 

Physical parameters used in estimating the friction 
stress in the AZ31B-F alloy due to solution hardening 

- 

Mg Al Zn Mn 

Weight Concentration* --- 

Density 3 ** (gm/cm 1 1.74 

Volume Concentration --- 
0 *** 

Atomic Radius (A) 1.598 

I4 --- 

(Ts/U) --- 

0.03 0.01 

2.'699 7.133 

0.0193 0.0024 

1.431 1.332 

0.105 0.166 

1.56 x 10 -3 3.96 x 10 -4 

0.002 

7.43 

0.00047 

1.12 

0.299 

1.63 x 10 -4 

* 
Metals Handbook, 1161, p. 1106 

** 
Ibid., pp. 44-45 

r** 
Ibid., pp. 50-51 
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Summing the conttibutions in Table 2, equation (9) becomes 

T 
sz 2.1 x 10 -3 
1! 

(10) 

This value should be compared with 

.. 

=f z -4 
T- 

9.1x 10 (11) 

which is derived from equation (8) where 1-1 = 1.65 x lo4 MN/m2 for 

magnesium. Although the result in equation (10) is larger than the 

observed quantity in (111, the discrepancy may be due in part to 

the neglection of the precipitation of a certain amount of the alloying 

elements, which would effectively result in smaller solute concentration, 

c. Also, Cottrell [151 has noted that equation (91, which was derived 

neglecting thermal effects, tends to overestimate the hardening effect 

observed at room temperature, since thermal fluctuations may assist 

dislocations in overcoming barriers.- 

If a more thorough investigation of the stress delay indicates that 

it is essentially constant as assumed above, then the solution hardening 

effect discussed is likely to play a major role in determining its value. 

On the other hand, if ciD depends on 0 upper, the stress rate, and in 

particular, amax as it apparently does for steel, then the interaction 

between mobile and forest dislocations (which would be rearranged by 

stain hardening) is likely to be a major source of the stress delay effect. 
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Finally, in returning to the discussion on the AJX/Bauschinger 

strain model, the range of forms which may be assumed for f(U/ap) 

and g(Up/U,> admits a stress delay without alteration to the proposed 

model. Note that the stress delay can be considered as a region of 

stress just below U/up= 1 for which f(U/Up) = 0. This effect simply 

accentuates the "sagging" of the f(U/U ) curve toward the axes. Curve 
P 

B in Fig. 10 (a) illustrates a suitable f(U/Up) which accommodates 

the stress delay. 
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CONCLUSIONS 

Experimental results characterizing the AE/stress behavior 

of elastically stressed AZ31B-F magnesium have been presented. During 

the first loading, many "burst" emissions are generated and continue 

for up to one hour if the maximum load is maintained. Subsequent 

repeated loadings and unloadings generate "continuous" emissions 

during both loading and unloading. These "continuous" emissions are 

cycle-dependent in that repeated loadings and unloadings result in 

cumulative emission counts which vary with the number of cycles. 

However, a shakedown phenomenon occurs since after about 30 cycles 

the cumulative counts remain constant and are highly repeatable. 

For a given change in stress the resulting cumulative counts 

in loading and unloading generally decrease with increasing upper stress 

levels, at least for the range of upper stress levels investigated. 

An empirically derived model of the Bauschinger effect indicates a similar 

trend. A stress delay of approximately 50 MN/m' is observed in the 

continuous emission which is quite reproducible for different specimens 

with the same history. Both the loading and unlaoding stress delays appear 

to be functions of the direction of loading, the stress rate and the 

loading history. A form of dislocation friction stress due to a solution 

hardening effect is suggested as a major source of the stress delay. 
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Thus, the existence of AE/elastic stress constitutive relations 

has been demonstrated. Despite this important observation, the data 

which have been presented must be interpreted in terms of trends only 

as the specific values associated with them depend upon the experimental 

apparatus used. Therefore, the standardization of AE equipment and 

techniques represents an endeavor of distinct importance in the develop- 

ment of acoustic emission utilization. 
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