46 research outputs found
Woodland, cropland and hedgerows promote pollinator abundance in intensive grassland landscapes, with saturating benefits of flower cover
1. Pollinating insects provide economic value by improving crop yield. They are also functionally and culturally important across ecosystems outside of cropland. To understand landscape-level drivers of pollinator declines, and guide policy and intervention to reverse declines, studies must cover (a) multiple insect and plant taxa and (b) a range of agricultural and semi-natural land uses. Furthermore, in an era of woodland restoration initiatives and rewilding ideologies, the contribution of woodland and woody linear features (WLFs; e.g. hedgerows) to pollinator abundance demands further investigation.
2. We demonstrate fine-scale analysis of high-quality, co-located measurements from a national environmental survey. We relate pollinator transect counts to ground-truth habitat and WLF maps across 300 1 km squares in Wales, UK. We look at effects of habitat type, flower cover, WLF density and habitat diversity on summer abundance (July and August) of eight insect groups, representing three insect orders (Lepidoptera, Hymenoptera and Diptera).
3. Compared with improved grassland (the dominant habitat in Wales), pollinator abundance is consistently higher in cropland and woodland—especially broadleaved woodland. For mining bees and two hoverfly groups, abundance is predicted to be at least 1.5× higher in woodland ecosystems than elsewhere. Furthermore, we estimate contributions of WLFs to abundance in agriculturally improved habitats to be up to 14% for honeybees and up to 21% for hoverflies.
4. The abundance of all insect groups increases with flower cover, which is a key mechanism through which woodland, cropland and grassland support pollinators. Importantly, we observe diminishing returns of increasing flower cover for abundance of non-Apis pollinator groups, expecting roughly twice the increase in abundance per % flower cover from 0% to 5%, as compared with 10% to 15%. However, the shape of the relationship was inverted for honeybees, which showed steeper increases in abundance at higher flower cover.
4. Synthesis and applications: We provide a holistic view of the drivers of pollinator abundance in Wales, in which flower cover, woodland, hedgerows and cropland are critical. We propose a key role for woodland creation, hedge-laying and farmland heterogeneity within future land management incentive schemes. Finally, we suggest targeting of interventions to maximise benefits for non-Apis pollinators. Specifically, increasing floral provision in areas where existing flower cover is low—for example, in flower-poor improved grasslands—could effectively increase pollinator abundance and diversity while prioritising wild over managed species
Deletion of the membrane complement inhibitor CD59a drives age and gender-dependent alterations to bone phenotype in mice
Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specificboneformationand abnormal bone mineral content. A recent study suggested a role for the complement membrane attack com-plex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attackcomplex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture.In vivobone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cor-tical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed infemale mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis,with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bonecells were studied in isolation,in vitroosteoclastogenesis was significantly increased in male CD59a-deficientmice, although osteoblast formation was not altered.Our data reveal, for thefirst time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation inmale mice results in longer and wider bones, but with less density, which is likely a major contributing factorfor their susceptibility to osteoarthritis. Thesefindings increase our understanding of the role of complementregulation in degenerative arthritis
Analysis of the Effect of Race, Socioeconomic Status, and Center Size on Unrelated National Marrow Donor Program Donor Outcomes: Donor Toxicities Are More Common at Low-Volume Bone Marrow Collection Centers
Previous studies have shown that risks of collection-related pain and symptoms are associated with sex, body mass index (BMI), and age in unrelated donors undergoing collection at National Marrow Donor Program (NMDP) centers. We hypothesized that other important factors (race, socioeconomic status (SES), and number of procedures at the collection center) might affect symptoms in donors. We assessed outcomes in 2,726 bone marrow (BM) and 6,768 peripheral blood stem cell (PBSC) donors collected between 2004 and 2009. Pain/symptoms are reported as maximum levels over mobilization and collection (PBSC) or within 2 days of collection (BM) and at 1 week after collection. For PBSC donors, race and center volumes were not associated with differences in pain/symptoms at any time. PBSC donors with high SES levels reported higher maximum symptom levels 1 week post donation (p=0.017). For BM donors, black males reported significantly higher levels of pain (OR=1.90, CI=1.14-3.19, p=0.015). No differences were noted by SES groups. BM donors from low volume centers reported more toxicity (OR=2.09, CI=1.26-3.46, p=0.006). In conclusion, race and SES have a minimal effect on donation associated symptoms. However, donors from centers performing ≤1 BM collection every 2 months have more symptoms following BM donation. Approaches should be developed by registries and low volume centers to address this issue
Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern
The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely
deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing
and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when
tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who
experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically
boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar
magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with
severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralizationresistant
Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1.
These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been
widely deployed, but where ongoing infections continue to occur at high levels.The South African Medical Research Council, the South African Research Chairs Initiative of the Department of Science and Innovation; the National Research Foundation of South Africa, the EDCTP2 program of the European Union’s Horizon 2020 program, the Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), which is supported by core funding from the Wellcome Trust and the Poliomyelitis Research Foundation, MRC UK, NRF, the Lily and Ernst Hausmann Trust and L’Oreal/Unesco Women in Science South Africa Young Talents awardee.http://www.cell.com/cell-host-microbe/homeImmunologyInternal Medicin
Corporate Governance for Sustainability
The current model of corporate governance needs reform. There is mounting evidence that the practices of shareholder primacy drive company directors and executives to adopt the same short time horizon as financial markets. Pressure to meet the demands of the financial markets drives stock buybacks, excessive dividends and a failure to invest in productive capabilities. The result is a ‘tragedy of the horizon’, with corporations and their shareholders failing to consider environmental, social or even their own, long-term, economic sustainability.
With less than a decade left to address the threat of climate change, and with consensus emerging that businesses need to be held accountable for their contribution, it is time to act and reform corporate governance in the EU.
The statement puts forward specific recommendations to clarify the obligations of company boards and directors and make corporate governance practice significantly more sustainable and focused on the long term
Recommended from our members
Analysis of the African coelacanth genome sheds light on tetrapod evolution
It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, as this lineage of lobe-finned fish was thought to have gone extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features . Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain, and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues demonstrate the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution
Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function
Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility
Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences