2,020 research outputs found

    Corporate Governance Issues

    Get PDF

    Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method.

    Get PDF
    Background: Competitive interactions in biological communities can be thought of as giving rise to "assembly rules" that dictate the species that are able to co-exist. Ant communities in tropical canopies often display a particular pattern, an "ant mosaic", in which competition between dominant ant species results in a patchwork of mutually exclusive territories. Although ant mosaics have been well-documented in plantation landscapes, their presence in pristine tropical forests remained contentious until recently. Here we assess presence of ant mosaics in a hitherto under-investigated forest stratum, the emergent trees of the high canopy in primary tropical rain forest, and explore how the strength of any ant mosaics is affected by spatial scale, time of day, and sampling method. Methods: To test whether these factors might impact the detection of ant mosaics in pristine habitats, we sampled ant communities from emergent trees, which rise above the highest canopy layers in lowland dipterocarp rain forests in North Borneo (38.8-60.2 m), using both baiting and insecticide fogging. Critically, we restricted sampling to only the canopy of each focal tree. For baiting, we carried out sampling during both the day and the night. We used null models of species co-occurrence to assess patterns of segregation at within-tree and between-tree scales. Results: The numerically dominant ant species on the emergent trees sampled formed a diverse community, with differences in the identity of dominant species between times of day and sampling methods. Between trees, we found patterns of ant species segregation consistent with the existence of ant mosaics using both methods. Within trees, fogged ants were segregated, while baited ants were segregated only at night. Discussion: We conclude that ant mosaics are present within the emergent trees of the high canopy of tropical rain forest in Malaysian Borneo, and that sampling technique, spatial scale, and time of day interact to determine observed patterns of segregation. Restricting sampling to only emergent trees reveals segregatory patterns not observed in ground-based studies, confirming previous observations of stronger segregation with increasing height in the canopy.Kalsum M. Yusah was funded by the South East Asia Rainforest Research Partnership (SEARRP), a Malaysian Ministry of Higher Education Fundamental Research Grant (FRG0373- STWN- 1/ 2014), and a Universiti Malaysia Sabah New Lecturer Grant Scheme grant (SLB0071- STWN- 2013). Tom M. Fayle was funded by a Czech Science Foundation standard grant (16-09427S)

    Single-cell twitching chemotaxis in developing biofilms

    Get PDF
    Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development. We show that individual cells can efficiently move toward chemoattractants using pili-based “twitching” motility and the Chp chemosensory system. Moreover, we discovered the behavioral mechanism underlying this surface chemotaxis: Cells reverse direction more frequently when moving away from chemoattractant sources. These corrective maneuvers are triggered rapidly, typically before a wayward cell has ventured a fraction of a micron. Our work shows that single bacteria can direct their motion with submicron precision and reveals the hidden potential for chemotaxis within bacterial biofilms

    LOCATION AND ENTREPRENEURSHIP:INSIGHTS FROM A SPATIALLY-EXPLICIT OCCUPATIONAL CHOICE MODEL WITH AN APPLICATION TO CHILE

    Get PDF
    Occupational choice and heterogeneous managerial ability enter a spatial Dixit-Stiglitz setting, linking location, wages and regional entrepreneurship rates. Market potential has a positive partial effect and wages a negative partial effect on the regional supply of entrepreneurs, both balancing in equilibrium with endogenous wages. Market potential increases profits, but also the opportunity cost of entrepreneurship. In the long-run equilibrium with perfect mobility, the cut-off level of ability determining selection into entrepreneurship will be the same across regions; moreover, regional differences in entrepreneurship rates depend only in differences in average fixed costs of firms. An empirical application is provided for Chile
    corecore