14 research outputs found

    Constitutive Activation of the PrfA Regulon Enhances the Potency of Vaccines Based on Live-Attenuated and Killed but Metabolically Active Listeria monocytogenes Strainsâ–¿

    No full text
    Recombinant vaccines derived from the facultative intracellular bacterium Listeria monocytogenes are presently undergoing early-stage clinical evaluation in oncology treatment settings. This effort has been stimulated in part due to preclinical results that illustrate potent activation of innate and adaptive immune effectors by L. monocytogenes vaccines, combined with efficacy in rigorous animal models of malignant and infectious disease. Here, we evaluated the immunologic potency of a panel of isogenic vaccine strains that varied only in prfA. PrfA is an intracellularly activated transcription factor that induces expression of virulence genes and encoded heterologous antigens (Ags) in appropriately engineered vaccine strains. Mutant strains with PrfA locked into a constitutively active state are known as PrfA* mutants. We assessed the impacts of three PrfA* mutants, G145S, G155S, and Y63C, on the immunologic potencies of live-attenuated and photochemically inactivated nucleotide excision repair mutant (killed but metabolically active [KBMA]) vaccines. While PrfA* substantially increased Ag expression in strains grown in broth culture, Ag expression levels were equivalent in infected macrophage and dendritic cell lines, conditions that more closely parallel those in the immunized host. However, only the prfA(G155S) allele conferred significantly enhanced vaccine potency to KBMA vaccines. In the KBMA vaccine background, we show that PrfA*(G155S) enhanced functional cellular immunity following an intravenous or intramuscular prime-boost immunization regimen. These results form the basis of a rationale for including the prfA(G155S) allele in future live-attenuated or KBMA L. monocytogenes vaccines advanced to the clinical setting

    Killed but Metabolically Active Bacillus anthracis Vaccines Induce Broad and Protective Immunity against Anthraxâ–¿

    No full text
    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown

    Risk factors for early-onset and very-early-onset pancreatic adenocarcinoma: a pancreatic cancer case-control consortium (PanC4) analysis

    No full text
    Objectives While pancreatic cancer (PC) most often affects older adults, to date, there has been no comprehensive assessment of risk factors among PC patients younger than 60 years. Methods We defined early-onset PC (EOPC) and very-early-onset PC (VEOPC) as diagnosis of PC in patients younger than 60 and 45 years, respectively. We pooled data from 8 case-control studies, including 1954 patients with EOPC and 3278 age-and sex-matched control subjects. Logistic regression analysis was performed to identify associations with EOPC and VEOPC. Results Family history of PC, diabetes mellitus, smoking, obesity, and pancreatitis were associated with EOPC. Alcohol use equal to or greater than 26 g daily also was associated with increased risk of EOPC (odds ratio, 1.49; 95% confidence interval, 1.21-1.84), and there appeared to be a dose-and age-dependent effect of alcohol on risk. The point estimate for risk of VEOPC was an odds ratio of 2.18 (95% confidence interval, 1.17-4.09). Conclusions The established risk factors for PC, including smoking, diabetes, family history of PC, and obesity, also apply to EOPC. Alcohol intake appeared to have an age-dependent effect; the strongest association was with VEOPC

    Biomarker clustering in autosomal dominant Alzheimer's disease

    Get PDF
    INTRODUCTION: As the number of biomarkers used to study Alzheimer's disease (AD) continues to increase, it is important to understand the utility of any given biomarker, as well as what additional information a biomarker provides when compared to others. METHODS: We used hierarchical clustering to group 19 cross-sectional biomarkers in autosomal dominant AD. Feature selection identified biomarkers that were the strongest predictors of mutation status and estimated years from symptom onset (EYO). Biomarkers identified included clinical assessments, neuroimaging, cerebrospinal fluid amyloid, and tau, and emerging biomarkers of neuronal integrity and inflammation. RESULTS: Three primary clusters were identified: neurodegeneration, amyloid/tau, and emerging biomarkers. Feature selection identified amyloid and tau measures as the primary predictors of mutation status and EYO. Emerging biomarkers of neuronal integrity and inflammation were relatively weak predictors. DISCUSSION: These results provide novel insight into our understanding of the relationships among biomarkers and the staging of biomarkers based on disease progression
    corecore