486 research outputs found

    Microgravity triggers ferroptosis and accelerates senescence in the MG-63 cell model of osteoblastic cells.

    Full text link
    peer reviewedIn space, cells sustain strong modifications of their mechanical environment. Mechanosensitive molecules at the cell membrane regulate mechanotransduction pathways that induce adaptive responses through the regulation of gene expression, post-translational modifications, protein interactions or intracellular trafficking, among others. In the current study, human osteoblastic cells were cultured on the ISS in microgravity and at 1 g in a centrifuge, as onboard controls. RNAseq analyses showed that microgravity inhibits cell proliferation and DNA repair, stimulates inflammatory pathways and induces ferroptosis and senescence, two pathways related to ageing. Morphological hallmarks of senescence, such as reduced nuclear size and changes in chromatin architecture, proliferation marker distribution, tubulin acetylation and lysosomal transport were identified by immunofluorescence microscopy, reinforcing the hypothesis of induction of cell senescence in microgravity during space flight. These processes could be attributed, at least in part, to the regulation of YAP1 and its downstream effectors NUPR1 and CKAP2L.Cytoskeleto

    PEGASE, Planification et gestion de l'assainissement des eaux de surface

    Full text link
    Le modèle PEGASE (Planification Et Gestion de l’ASsainissement des Eaux) est un modèle intégré bassins hydrographiques/rivières qui permet de calculer de façon déterministe et prévisionnelle la qualité des eaux des rivières en fonction des rejets et apports de pollution (relation pression-impact). Développé depuis la fin des années 1980 à l’université de Liège, il permet d'orienter les choix des opérateurs publics et privés en matière de gestion des eaux de surface à l'échelle des petits et grands bassins versants. Ce rapport de synthèse reprend la description du travail réalisé pendant 3 ans (et détaillé dans 5 rapports d'avancement), et qui a permis de construire la première version du modèle, appliquée sur le territoire de la Région Wallonne.PEGAS

    Second-tier trio exome sequencing after negative solo clinical exome sequencing: an efficient strategy to increase diagnostic yield and decipher molecular bases in undiagnosed developmental disorders

    No full text
    International audienceDevelopmental disorders (DD), characterized by malformations/dysmorphism and/or intellectual disability, affecting around 3% of worldwide population, are mostly linked to genetic anomalies. Despite clinical exome sequencing (cES) centered on genes involved in human genetic disorders, the majority of patients affected by DD remain undiagnosed after solo-cES. Trio-based strategy is expected to facilitate variant selection thanks to rapid parental segregation. We performed a second step trio-ES (not only focusing on genes involved in human disorders) analysis in 70 patients with negative results after solo-cES. All candidate variants were shared with a MatchMaking exchange system to identify additional patients carrying variants in the same genes and with similar phenotype. In 18/70 patients (26%), we confirmed causal implication of nine OMIM-morbid genes and identified nine new strong candidate genes (eight de novo and one compound heterozygous variants). These nine new candidate genes were validated through the identification of patients with similar phenotype and genotype thanks to data sharing. Moreover, 11 genes harbored variants of unknown significance in 10/70 patients (14%). In DD, a second step trio-based ES analysis appears an efficient strategy in diagnostic and translational research to identify highly candidate genes and improve diagnostic yield

    Colocalization of cystatin M/E and its target proteases suggests a role in terminal differentiation of human hair follicle and nail.

    Get PDF
    Contains fulltext : 81185.pdf (publisher's version ) (Closed access)The cysteine protease inhibitor cystatin M/E is a key regulator of a biochemical pathway that leads to epidermal terminal differentiation by inhibition of its target proteases cathepsin L, cathepsin V, and legumain. Inhibition of cathepsin L is important in the cornification process of the skin, as we have recently demonstrated that cathepsin L is the elusive processing and activating protease for transglutaminase 3, an enzyme that is responsible for crosslinking of structural proteins in cornified envelope formation. Here, we study the localization of all players of this pathway in the human hair follicle and nail unit in order to elucidate their possible role in the biology of these epidermal appendages. We found that cathepsin L and transglutaminase 3 specifically colocalize in the hair bulb and the nail matrix, the regions that provide cells that terminally differentiate to the hair fiber and the nail plate, respectively. Furthermore, transglutaminase 3 also colocalizes with the structural proteins loricrin and involucrin, which are established transglutaminase substrates. These findings suggest that cathepsin L and transglutaminase 3 could be involved in the pathway that leads to terminal differentiation, not only in the epidermis but also in the human hair follicle and nail unit

    Downregulation of antigen-presenting cell functions after administration of mitogenic anti-CD3 monoclonal antibodies in mice.

    No full text
    Antibodies against CD3epsilon are widely used as immunosuppressive agents. Although it is generally assumed that these reagents exert their immunomodulatory properties by inducing T-cell deletion and/or inactivation, their precise mechanism of action remains to be elucidated. Using a murine model, we demonstrate in this report that administration of anti-CD3epsilon antibodies causes the migration and maturation of dendritic cells (DC) in vivo, as determined by immunohistochemical analysis. This maturation/migration process was followed by selective loss of splenic DC, which resulted in a selective inhibition of antigen-presenting cell (APC) functions in vitro. Spleen cells from anti-CD3epsilon-treated animals were unable to productively stimulate naive alloreactive T cells and Th1-like clones in response to antigen, while retaining the ability to present antigen to a T-cell hybridoma and Th2 clones. Anti-CD3epsilon treatment was found to induce a selective deficiency in the ability of spleen cells to produce bioactive interleukin-12 in response to CD40 stimulation. APC dysfunction was not observed when nonmitogenic forms of anti-CD3epsilon antibodies were used, suggesting that splenic DC loss was a consequence of in vivo T-cell activation. Nonmitogenic anti-CD3epsilon monoclonal antibodies were found to be less immunosuppressive in vivo, raising the possibility that APC dysfunction contributes to anti-CD3epsilon-induced immunomodulation. Collectively, these data suggest a novel mechanism by which mitogenic anti-CD3epsilon antibodies downregulate immune responses.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    • …
    corecore