107 research outputs found

    Buffered-microgrid Structure for Future Power Networks; a Seamless Microgrid Control

    Get PDF
    This paper proposes a new structure and control scheme for future microgrid-based power system, which is designed to achieve a seamless operation in both islanded and grid-connected modes, while the load is appropriately shared by all units (i.e. renewable sources, energy storage systems and the grid). The proposed method, which involves physical separation of the microgrid from the grid by using AC/DC/AC converters, ensures safe, secure and seamless operation of both modes. Such a “buffered” structure enables reduction in the transmission losses by reducing the exchanged energy with the grid through using a dead-zone in the control of the buffering AC/DC/AC converter. An inverse-droop control technique has been implemented to control the voltage magnitude and frequency, using current control in the dq-frame. PSCAD/EMTDC software has been used to validate the proposed method through simulating different scenarios. The solution provides a simple, smooth, and communication-free decentralized control for multi-sources microgrids. Moreover, the proposed buffered structure separates the dynamics of the microgrid and the grid, which enables a faster microgrid voltage and frequency control and protects the grid and the microgrid from faults on the other side

    Interleukin-4 (IL-4), but not IL-10, regulates the synthesis of IL-6, IL-8 and leukemia inhibitory factor by human bone marrow stromal cells

    Get PDF
    AbstractLeukemia inhibitory factor (LIF), interleukin 6 (IL-6) and IL-8 are important regulators of inflammation and hematopoiesis. Human bone marrow stromal cells regulate marrow hematopoiesis by secreting cytokines. By using reverse-transcriptase polymerase chain reaction (RT-PCR), we demonstrate that human bone marrow stromal cells constitutively express LIF, IL-6 and IL-8 transcripts. By using specific ELISAs, we found that their spontaneous productions of LIF, IL-6 and IL-8 are elevated in response to serum and after stimulation with the pro-inflammatory cytokines IL-1α and TNF-α. The anti-inflammatory cytokine IL-4 reduces their serum- and cytokine-induced LIF secretion. By contrast, IL-4 stimulates their serum- and IL-1α-induced IL-6 synthesis. IL-4 has no effect on the serum-induced IL-8 synthesis by marrow stromal cells, but stimulates their cytokine-induced IL-8 production. The anti-inflammatory cytokine IL-10 has no effect on the serum- and cytokine-induced LIF, IL-6 and IL-8 synthesis by bone marrow stromal cells. RT-PCR experiments reveal the presence of IL-4 receptor α-chain mRNA and IL-10 receptor mRNA in cultured bone marrow stromal cells. The differential regulation by IL-4 of two related cytokines, such as LIF and IL-6, and the enhanced effect of this ‘anti-inflammatory’ cytokine on IL-6 and IL-8 synthesis highlight the tightly controlled regulation and the complexity of the cytokine production within the human bone marrow

    Environmental stimuli shape microglial plasticity in glioma

    Get PDF
    In glioma, microglia and infiltrating macrophages are exposed to factors that force them to produce cytokines and chemokines, contributing to tumor growth and maintaining a pro-tumorigenic, immunosuppressed microenvironment. We demonstrate that housing glioma-bearing mice in enriched environment (EE) reverts the immunosuppressive phenotype of infiltrating myeloid cells, by modulating inflammatory gene expression. Under these conditions, branching and patrolling activity of myeloid cells is increased, and their phagocytic activity is promoted. Modulation of gene expression depends on interferon-(IFN) g produced by natural killer (NK) cells, disappearing in mice depleted of NK cells or lacking IFN-g, and was mimicked by exogenous interleukin-15 (IL-15). Further, we describe a key role for BDNF produced in the brain of mice housed in EE in mediating the expression of IL-15 in CD11b+ cells. These data define novel mechanisms linking environmental cues to the acquisition of a pro-inflammatory, anti-tumor microenvironment in mouse brain
    • 

    corecore