101 research outputs found
Conserving, Distributing and Managing Genetically Modified Mouse Lines by Sperm Cryopreservation
Sperm from C57BL/6 mice are difficult to cryopreserve and recover. Yet, the majority of genetically modified (GM) lines are maintained on this genetic background.Reported here is the development of an easily implemented method that consistently yields fertilization rates of 70+/-5% with this strain. This six-fold increase is achieved by collecting sperm from the vas deferens and epididymis into a cryoprotective medium of 18% raffinose (w/v), 3% skim milk (w/v) and 477 microM monothioglycerol. The sperm suspension is loaded into 0.25 mL French straws and cooled at 37+/-1 degrees C/min before being plunged and then stored in LN(2). Subsequent to storage, the sperm are warmed at 2,232+/-162 degrees C/min and incubated in in vitro fertilization media for an hour prior to the addition of oocyte cumulus masses from superovulated females. Sperm from 735 GM mouse lines on 12 common genetic backgrounds including C57BL/6J, BALB/cJ, 129S1/SvImJ, FVB/NJ and NOD/ShiLtJ were cryopreserved and recovered. C57BL/6J and BALB/cByJ fertilization rates, using frozen sperm, were slightly reduced compared to rates involving fresh sperm; fertilization rates using fresh or frozen sperm were equivalent in all other lines. Developmental capacity of embryos produced using cryopreserved sperm was equivalent, or superior to, cryopreserved IVF-derived embryos.Combined, these results demonstrate the broad applicability of our approach as an economical and efficient option for archiving and distributing mice
Repair of the TGFBI gene in human corneal keratocytes derived from a granular corneal dystrophy patient via CRISPR/Cas9-induced homology-directed repair
Abstract Granular corneal dystrophy (GCD) is an autosomal dominant hereditary disease in which multiple discrete and irregularly shaped granular opacities are deposited in the corneal stroma. GCD is caused by a point mutation in the transforming growth factor-β-induced (TGFBI) gene, located on chromosome 5q31. Here, we report the first successful application of CRISPR-Cas9-mediated genome editing for the correction of a TGFBI mutation in GCD patient-derived primary corneal keratocytes via homology-directed repair (HDR). To correct genetic defects in GCD patient cells, we designed a disease-specific guide RNA (gRNA) targeting the R124H mutation of TGFBI, which causes GCD type 2 (GCD2). An R124H mutation in primary human corneal keratocytes derived from a GCD2 patient was corrected by delivering a CRISPR plasmid expressing Cas9/gRNA and a single-stranded oligodeoxynucleotide HDR donor template in vitro. The gene correction efficiency was 20.6% in heterozygous cells and 41.3% in homozygous cells. No off-target effects were detected. These results reveal a new therapeutic strategy for GCD2; this method may also be applicable to other heredity corneal diseases
Pancreatic Transcription Factors Containing Protein Transduction Domains Drive Mouse Embryonic Stem Cells towards Endocrine Pancreas
Protein transduction domains (PTDs), such as the HIV1-TAT peptide, have been previously used to promote the uptake of proteins into a range of cell types, including stem cells. Here we generated pancreatic transcription factors containing PTD sequences and administered these to endoderm enriched mouse embryonic stem (ES) cells under conditions that were designed to mimic the pattern of expression of these factors in the developing pancreas. The ES cells were first cultured as embryoid bodies and treated with Activin A and Bone morphogenetic protein 4 (BMP4) to promote formation of definitive endoderm. Cells were subsequently plated as a monolayer and treated with different combinations of the modified recombinant transcription factors Pdx1 and MafA. The results demonstrate that each transcription factor was efficiently taken up by the cells, where they were localized in the nuclei. RT-qPCR was used to measure the expression levels of pancreatic markers. After the addition of Pdx1 alone for a period of five days, followed by the combination of Pdx1 and TAT-MafA in a second phase, up-regulation of insulin 1, insulin 2, Pdx1, Glut2, Pax4 and Nkx6.1 was observed. As assessed by immunocytochemistry, double positive insulin and Pdx1 cells were detected in the differentiated cultures. Although the pattern of pancreatic markers expression in these cultures was comparable to that of a mouse transformed β-cell line (MIN-6) and human islets, the expression levels of insulin observed in the differentiated ES cell cultures were several orders of magnitude lower. This suggests that, although PTD-TFs may prove useful in studying the role of exogenous TFs in the differentiation of ES cells towards islets and other pancreatic lineages, the amount of insulin generated is well below that required for therapeutically useful cells
A Universal System for Highly Efficient Cardiac Differentiation of Human Induced Pluripotent Stem Cells That Eliminates Interline Variability
The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC) holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC) and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC), including hiPSC generated from CD34(+) cord blood using non-viral, non-integrating methods.We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB) with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+) cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5%) oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89%) of cardiac troponin I(+) cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine
Flexible prey handling, preference and a novel capture technique in invasive, sub-adult Chinese mitten crabs
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article
Effect of Fructooligosaccharide Metabolism on Chicken Colonization by an Extra-Intestinal Pathogenic Escherichia coli Strain
Extra-intestinal pathogenic Escherichia coli (ExPEC) strains cause many diseases in humans and animals. While remaining asymptomatic, they can colonize the intestine for subsequent extra-intestinal infection and dissemination in the environment. We have previously identified the fos locus, a gene cluster within a pathogenicity island of the avian ExPEC strain BEN2908, involved in the metabolism of short-chain fructooligosaccharides (scFOS). It is assumed that these sugars are metabolized by the probiotic bacteria of the microbiota present in the intestine, leading to a decrease in the pathogenic bacterial population. However, we have previously shown that scFOS metabolism helps BEN2908 to colonize the intestine, its reservoir. As the fos locus is located on a pathogenicity island, one aim of this study was to investigate a possible role of this locus in the virulence of the strain for chicken. We thus analysed fos gene expression in extracts of target organs of avian colibacillosis and performed a virulence assay in chickens. Moreover, in order to understand the involvement of the fos locus in intestinal colonization, we monitored the expression of fos genes and their implication in the growth ability of the strain in intestinal extracts of chicken. We also performed intestinal colonization assays in axenic and Specific Pathogen-Free (SPF) chickens. We demonstrated that the fos locus is not involved in the virulence of BEN2908 for chickens and is strongly involved in axenic chicken cecal colonization both in vitro and in vivo. However, even if the presence of a microbiota does not inhibit the growth advantage of BEN2908 in ceca in vitro, overall, growth of the strain is not favoured in the ceca of SPF chickens. These findings indicate that scFOS metabolism by an ExPEC strain can contribute to its fitness in ceca but this benefit is fully dependent on the bacteria present in the microbiota
Efficient Differentiation of Embryonic Stem Cells into Mesodermal Precursors by BMP, Retinoic Acid and Notch Signalling
The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway
Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks
Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions
Ectopic Expression of Neurogenin 2 Alone is Sufficient to Induce Differentiation of Embryonic Stem Cells into Mature Neurons
Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cell̀s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs) into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment. Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell research and regenerative medicine
- …