

1	
2	Flexible prey handling, preference and a novel capture technique in
3	invasive, sub-adult Chinese mitten crabs
4	
5	Christopher D. Mills ^a , Paul F. Clark ^b and David Morritt ^a
6	
7	^a School of Biological Sciences, Royal Holloway University of London, Egham, United
8	Kingdom
9	^b Department of Life Sciences, Natural History Museum, Cromwell Road, London, United
10	Kingdom
11	
12	Correspondence: <i>E-mail address:</i> <u>d.morritt@rhul.ac.uk</u>
13	
14	Running header: Prey handling and preference of Eriocheir sinensis
15	
16	Eriocheir sinensis (Crustacea: Brachyura: Varunidae) is one of only two crabs on the world's
17	list of 100 most invasive aquatic invertebrates. This crab has successfully invaded NE Europe
18	as well as the United States, eastern Canada, southern Iraq and Tokyo Bay, Japan. In
19	England, the River Thames population of <i>E. sinensis</i> continues to increase in numbers and
20	disperse westward upstream, although little is known about foraging. The present study
21	undertook a preference and prey handling study of sub-adult mitten crabs collected from the
22	Thames. A digital camcorder, capable of detecting infrared light, was used in the laboratory
23	overnight to identify crab food preference, document prey handling times and record
24	behaviour. The test prey species, namely the amphipod Gammarus zaddachi, and two species
25	of gastropod molluscs, Theodoxus fluviatilis and Radix peregra, were collected in the same

26	habitat as the crabs and all were consumed under laboratory conditions. Eriocheir were able
27	to capture mobile G. zaddachi using a novel prey capture technique not previously described
28	in brachyurans and use different skills for handling each prey species. This flexibility in prey
29	handling may be an important contributory factor in their freshwater invasive capacity.
30	Results indicated that the crabs had a preference for G. zaddachi which were consumed most
31	frequently and preferentially over both mollusc species. Prey choice may be based on
32	maximising net energy gain as consuming G. zaddachi was shown to provide the highest rate
33	of potential energy consumption by the crab due, in part, to a much shorter handling time
34	than both species of snails.
35	
36	Keywords
37	Eriocheir sinensis – predation – prey handling – Gammarus zaddachi – Theodoxus fluviatilis
38	– Radix peregra – video recording
39	
39 40	Introduction
	Introduction
40	Introduction Invasive species can have considerable effects on their colonized habitats such as displacing
40 41	
40 41 42	Invasive species can have considerable effects on their colonized habitats such as displacing
40 41 42 43	Invasive species can have considerable effects on their colonized habitats such as displacing native species (Dick et al., 1995; Kiesecker et al., 2001; Sanders et al., 2003), habitat
40 41 42 43 44	Invasive species can have considerable effects on their colonized habitats such as displacing native species (Dick et al., 1995; Kiesecker et al., 2001; Sanders et al., 2003), habitat modification (Cuddington & Hastings, 2004) and hybridising with native species (Daehler &
40 41 42 43 44 45	Invasive species can have considerable effects on their colonized habitats such as displacing native species (Dick et al., 1995; Kiesecker et al., 2001; Sanders et al., 2003), habitat modification (Cuddington & Hastings, 2004) and hybridising with native species (Daehler & Strong, 1997). Non-native decapod crustaceans are highly prevalent in all types of aquatic
40 41 42 43 44 45 46	Invasive species can have considerable effects on their colonized habitats such as displacing native species (Dick et al., 1995; Kiesecker et al., 2001; Sanders et al., 2003), habitat modification (Cuddington & Hastings, 2004) and hybridising with native species (Daehler & Strong, 1997). Non-native decapod crustaceans are highly prevalent in all types of aquatic habitats and, in Europe, invasive species make up 46% of all Decapoda within freshwater
40 41 42 43 44 45 46 47	Invasive species can have considerable effects on their colonized habitats such as displacing native species (Dick et al., 1995; Kiesecker et al., 2001; Sanders et al., 2003), habitat modification (Cuddington & Hastings, 2004) and hybridising with native species (Daehler & Strong, 1997). Non-native decapod crustaceans are highly prevalent in all types of aquatic habitats and, in Europe, invasive species make up 46% of all Decapoda within freshwater habitats (Ranasinghe et al., 2005; Galil, 2008; Karatayev et al., 2009). Due to their
40 41 42 43 44 45 46 47 48	Invasive species can have considerable effects on their colonized habitats such as displacing native species (Dick et al., 1995; Kiesecker et al., 2001; Sanders et al., 2003), habitat modification (Cuddington & Hastings, 2004) and hybridising with native species (Daehler & Strong, 1997). Non-native decapod crustaceans are highly prevalent in all types of aquatic habitats and, in Europe, invasive species make up 46% of all Decapoda within freshwater habitats (Ranasinghe et al., 2005; Galil, 2008; Karatayev et al., 2009). Due to their prevalence, they have a wide range of effects within their invaded habitats. These include

- and as vectors for disease e.g., *Pacifastacus leniusculus* (Dana, 1852) a known carrier of
 crayfish plague which has caused rapid decline in populations of *Austropotamobius pallipes*(Lereboullet, 1858) within the UK (Lilley et al., 1997).
- 54

One important effect invasive species can have is on trophic interactions since these are key 55 in determining the structure of ecosystems. To determine the potential impacts, different 56 aspects of trophic interactions can be used such as preference, feeding frequency and mutual 57 predation. Invasive species can have vastly different trophic impacts in invaded habitats when 58 59 compared to their native range. Invasives can have an impact on prey at twice the intensity than that of native predators (Salo et al., 2007). Following this they can have the potential to 60 extirpate or severely reduce the population size of prey species such as the brown tree snake 61 62 causing large declines in avifauna in Guam (Wiles et al., 2003). There are a number of examples where invasive decapod crustaceans have impacted trophic relationships in their 63 invaded habitat. For example Procambarus clarkii (Girard, 1852) has become a common 64 65 prev item for several native predators in the Mediterranean (Geiger et al., 2005), whereas in Japan the invasive P. leniusculus consumes a potential competitor, the native Cambaroides 66 japonicus (de Haan, 1841), which could contribute to species replacement (Nakata & 67 Goshima, 2006). Other trophic effects of invasive decapods have also been observed in C. 68 69 maenas. Predation by this species in non-native regions can induce shell thickening in 70 populations of mussels (Freeman & Byers, 2006), reduce the presence of juvenile cockles (Walton et al., 2002) and the species is also capable of displacing native species from their 71 prey (McDonald et al., 2001; Rossong et al., 2006). Understanding flexibility in feeding 72 73 behaviour and feeding preferences could be useful for assessing the potential impacts that they can have on their new habitat. Predators do not consume prey following their 74 distribution or density, but usually show preference for certain prey items over others 75

(Jackson & Underwood, 2007; Grason & Miner, 2012). Preference can be defined as an
individual choosing to eat its most favoured prey item before others and, as such, the last prey
item eaten would be the least desired. When there is no preference, selection of prey would
be random.

80

An invasive decapod which has spread globally is the Chinese mitten crab, Eriocheir sinensis 81 H. Milne Edwards, 1853. This species is native to China and Korea and is listed as one of 82 only two brachyuran crab species in the top 100 most invasive species (Lowe et al., 2000) 83 84 based on their serious impact on biological diversity and/or human activities. Unlike native crab species in the UK, it spends most of its lifespan in freshwater and has a catadromous life 85 history. This species has been present within the UK since 1935, introduced either through 86 87 ballast water or intentional introduction, and had become well established by 1973 (Herborg et al., 2005). Subsequently E. sinensis numbers have increased greatly within the Thames 88 (Clark et al., 1998; Gilbey et al. 2008). 89

90

Considering its global distribution, little is known about the feeding strategy of mitten crabs 91 92 in invaded habitats other than being described as opportunistic omnivores, based on two analyses of gut contents using morphological evidence and stable isotopes (Rudnick & Resh, 93 94 2005; Czerniejewski et al. 2010). In both of these studies chironomids were shown to be most 95 prevalent invertebrate in their diet, although much of what was in the gut was morphologically unidentifiable; a common problem when examining the diet of decapod 96 crustaceans due to the effectiveness of the gastric mill. The evidence for this species of crab 97 98 to utilise other potential prey species is limited, although recent work has demonstrated consumption of fish eggs in laboratory conditions (Webster et al. 2015). Despite the lack of 99 prey preference studies for *E. sinensis*, such data are available for other species of decapod 100

101 crustaceans using a variety of different methods (e.g., Ashton, 2002; Buck et al., 2003;

102 Jackson & Underwood, 2007; Erickson et al. 2008; Grason & Miner, 2012; Haddaway et al.,

103 2012; Laitano et al., 2013). For the present study methods devised by Taplin (2007) were

used and observations on handling times of the different prey species were also made.

105 Handling time observations have been undertaken on several species of decapod crustaceans

106 (e.g., Elner & Hughes, 1978; Hughes & Seed, 1981; ap Rheinallt, 1986; Hudson & Wigham,

107 2003) feeding primarily on bivalves.

108

109 Sub-adult E. sinensis (10-40mm) collected from the River Thames were used to establish prey preference for the most abundant species found at the same locations as the mitten crabs. 110 As sub-adult E. sinensis are captured upstream in great numbers, they have a great potential 111 112 to cause disruption to native habitat hence the use of this size range in the current study. The main hypothesis is that there will be a difference in preference between different potential 113 prey species and it is predicted that sub-adult crabs will exhibit a preference for prey which 114 are more profitable as defined by the rate of energy acquisition by the crab. Handling times 115 were also observed and further detailed observations allow for description of the handling 116 methods used for different prey species. 117

118

119 Materials and methods

120

121 Study Organisms

122

123 Sub-adult crabs were collected during low spring tides at Chelsea Bridge (51.4847°N,

124 0.1500°W) 22nd October 2013 and Kew Bridge (51.4869°N, 0.2875°W), England, at low

spring tide 31st March 2014. A total of 33 and 22 crabs were collected from each site

respectively. Another 54 crabs were also made available from previous collections made in
Summer, 2013, also from Chelsea Bridge and Kew Bridge. All crabs were housed in groups
in large tanks of aerated, dechlorinated tap water within the aquarium and fed regularly with
defrosted fish (perch, *Perca fluviatilis*) up until use in experiments.

130

Potential prey species were also collected at low tide on the foreshore in the vicinity of 131 Chelsea Bridge. Three of the most abundant species were the amphipod Gammarus zaddachi 132 Sexton, 1912 and two species of molluscs, the river nerite, *Theodoxus fluviatilis* (Linnaeus, 133 134 1758), and the wandering snail, Radix peregra (O.F. Müller, 1774). All are native to the UK and were selected as they represent different morphologies and habits and thus different 135 challenges when it comes to prey handling. The amphipod, G. zaddachi is a fast-swimming 136 137 species; T. fluviatilis is an operculate gastropod with a non-spiral shell which is usually closely attached to the substrate; R. peregra lacks an operculum and has a spiral shell. 138 Preliminary experiments, in which aquaria were set up with individual mitten crabs with four 139 140 specimens of each potential prey species and left for seven days, showed that all three species were consumed. 141

142

143 Preference Experiments

144

To determine the preference of crabs for the three prey species, trials were completed using the method described by Taplin (2007). This method assumes that an individual consumes prey in the order of preference. Therefore each prey item is assigned a rank depending on order of consumption i.e. the first prey eaten will be assigned rank 1, the second prey 2 and so on until all prey have been assigned a rank. When a prey item is not consumed it is considered last or if there are multiple prey left unconsumed they are considered tied for last and given an average rank. In this way unconsumed prey items are considered as the predator
having the least preference for them (Taplin, 2007). The total number of prey items
consumed in each trial was recorded.

154

Fifty crabs were starved for 7 days prior to the preference trials to assure maximum prey
consumption. Furthermore, only crabs which had both chelae present were used so they
would be feeding at optimum efficiency. Each crab was only trialled once. The prey species
used for these trials were *G. zaddachi*, *T. fluviatilis* and *R. peregra*.

159

During preference trials crabs were placed individually in each aquarium and given six hours 160 to acclimate. After acclimation two of each prey species ranging from 7-10mm in length (six 161 162 prey items in total) were placed randomly in the aquaria to help reduce any initial bias 163 towards nearby prey. Crabs were then left for a period of sixteen hours over night with the prey; three hours light followed by twelve hours dark then one more hour of light to record 164 the predominantly nocturnal feeding activity. During this period three aquaria were recorded 165 simultaneously from underneath by being positioned on top a glass panel supported by a 166 frame. 167

168

A JVC HZ-300 digital camcorder converted to full spectrum detection and set to time lapse, capturing frames at 1-s intervals, was used to record feeding behaviour. All recorded footage was slowed down using MPC-HC 1.7.6 software during review. The camcorder was equipped with two darkness activated infrared emitters directed at the aquaria so recording could be captured in darkness. After the trial the crabs were removed, the aquaria were cleaned and the water replaced for the next trial. Footage was reviewed taking note of the order in which prey were consumed. Gender, carapace width and chela height was noted to

0.1mm using a dial calliper after the trial so not to cause any unnecessary stress prior to trials.
Controls with six prey items and no crab showed no natural mortality in prey species over the
same period of time.

179

All feeding experiments were undertaken in clear aquaria measuring 255mm × 150mm × 190 mm (L × W × D). These were filled with 1500ml of dechlorinated tap water and were aerated with an air stone attached to an air pump. The aquaria were set up within the marine aquarium at RHUL with a constant temperature of $11^{\circ}C \pm 1^{\circ}C$ and a L:D 12:12 cycle using fluorescent lighting.

185

186 *Prey Handling*

187

In a separate series of experiments, twenty mitten crabs were fed *G. zaddachi*, ten *T. fluviatilis* and eleven *R. peregra* in the preference trials. Some crabs were used for multiple
species due to the limited availability. Despite this each crab was only used once for each
prey species.

192

The crabs were offered a prey species within the same 7–10mm size range as used above. For *G. zaddachi* two individuals were offered to the crabs because this increased the likelihood of capture to allow behavioural observations. For both mollusc species individuals were placed directly in front of the crabs. If a crab did not consume any prey item, no data were collected and it was removed from the aquarium and replaced with another specimen. Crabs were recorded whilst feeding to allow description of handling methods and to provide accurate handling times.

Handling time was defined as the period starting from when the crab captured the prey until the point at which the crab was no longer interacting with it. As the morphology of *G. zaddachi* and the two snail species differs the end point of handling time was defined differently. For *G. zaddachi* the end of handling time was defined as the point at which the entire prey item was consumed and for the two snail species as the point at which the crab abandoned the empty shell for a period of one minute; this time was subtracted from the total handling time.

208

209 The total handling time for the two snail species was also divided into several periods. In the case of T. fluviatilis it was divided into three periods as follows: time to remove operculum, 210 211 time to remove the flesh and time spent picking at the empty shell. The first period started 212 once the crab picked up the shell with its chelae and finished when it had completely removed the operculum from the foot of the snail. The next period started once the operculum 213 had been detached and continued until the flesh was removed from the shell and had finished 214 consuming the flesh. The final period started once the flesh had been consumed and the crab 215 began to pick at the shell with its chelae. This period finished once the crab had dropped the 216 shell and left it for one minute. For *R. peregra* handling was divided into two periods, the 217 first started once the crab picked up the shell and ended once all flesh had been consumed. 218 219 The final period was the same as T. fluviatilis; it started once the flesh had been removed and 220 finished once the crab had abandoned the shell for one minute.

221

To determine the rate of energy consumption during prey manipulation the handling time was combined with the energy content for each prey species which was gathered from relevant literature. This was calculated by converting the length of the prey item used in the sample to wet weight using a regression equation for each prey species (Appendix 1); wet weight was

226 changed to shell free dry weight using relevant conversion factors from Rumohr et al. (1987). This was then combined with the handling time of each sample and the average energy 227 content of the relevant species (or related species) to provide the rate of energy consumption 228 229 for the crab during manipulation and ingestion. 230 Statistical Analysis 231 232 All statistical analyses were completed using SPSS software. Data were checked for 233 234 normality and homogeneity of variance using Shapiro-Wilk and Levene's test respectively. As data for prey preference scores, average handling times and energy acquisition rates did 235 not meet the assumptions for parametric tests, Kruskal-Wallis tests followed by post hoc 236 237 Mann-Whitney U tests were used to determine differences between treatments. Linear 238 regression analysis was used to explore the relationships between size of crabs and handling times for the different prey species. 239 240 Results 241 242 Preference 243 244 245 During preference trials G. zaddachi was the most frequently consumed species, with both mollusc species being consumed far less frequently during the experimental period (Table 1). 246 At least one G. zaddachi was eaten in every trial and both specimens were eaten in 80% of 247 248 studies. Snails were eaten far less frequently, with one T. fluviatilis consumed in 40% of trials and one *R. peregra* in 18%. Occasions where the crabs consumed both the *T. fluviatilis* 249

happened more frequently than instances where a single *R. peregra* was consumed (e.g., 20%)

251 of trials). There was a significant difference in preference for different prey species

- 252 (χ^2 =107.554, P<0.001). It was found that crabs have the strongest preference for *G. zaddachi*
- 253 over *T. fluviatilis* (U=14, Z=-8.74, P<0.001) and *R. peregra* (U=1.5, Z=-8.81, P<0.001) with
- a preference score of 1.9. Between the two snails there was a smaller preference for *T*.
- *fluviatilis* over *R. peregra* (U=782, Z=-3.43, p=0.001) with preference scores of 4.1 and 4.5
- respectively (Fig. 1). It was also shown that male crabs that have a preference for *T. fluviatilis*
- 257 over *R. peregra* (U=113, p<0.001), whereas for female crabs there was no preference
- between the two mollusc species (Fig. 2).
- 259

260 Handling Methods

261

262 Mitten crabs displayed three different methods of prey capture for the amphipod G. zaddachi. For two capture methods (see Appendix 2 for examples), the crab exhibited minimal 263 movement or remained stationary. In the first method it stayed in this position until the prey 264 265 swam underneath its sternum and between the merus and the propodus of the chela. At this point the propodus was snapped shut against the merus trapping the amphipod. The amphipod 266 was effectively speared between a row of spines on the inner surface on the propodus (see 267 Fig. 3) and held firmly against a row of spines on the inner margin of the merus (see Fig. 4). 268 This adaptation potentially allows capture of smaller, faster moving prey items than if using 269 270 the pincers alone which almost certainly involves a finer degree of motor control of the dactyl and propodus. Indeed this could be said of all three methods used when capturing amphipods. 271 The head of the amphipod was then sometimes crushed by the pincers (propodus and 272 273 dactylus) of the other chela. For the second method the crabs would also stay in a stationary position until the prey swam underneath its sternum at which point the crab trapped the prey 274 against the ventral surface of the body using the pereiopods nearest to the prey and then used 275

276 its nearest chela to either trap the prey against its body using the row of spines on the merus or to grasp the prey. When the prey was securely trapped against the sternal plates, the crab 277 then grasped the amphipod using the free chela. The pereiopods that were holding the prey in 278 279 place would then release the prey. In cases where one chela was used to trap the prey against the ventral surface of the body, this chela would subsequently be manoeuvred to also hold on 280 to the prey. In both cases once grasped with the chelae the crab would then manipulate the 281 prey towards the mouthparts where the third maxillipeds were used to aid in holding the prey 282 in place. The prey was then guided through the mouthparts to the mandibles which were used 283 284 to shred the prey before being passed though the mouth into the gastric mill. Once the main prey portion was consumed, the crab then picked up any soft fragments remaining and these 285 were consumed. 286

287

The third method of capture involved the crab actively trying to catch the prey. Here the crab pounced towards the nearby prey and used its chelae to scoop and trap the prey against the ventral surface of the body similarly to previous description. The prey was then carefully manoeuvred by the chelae, these being used in turn to grip onto the prey and, if necessary, the second pereiopods were also used to help hold the prey. From this point onwards prey was processed as described for the first capture method.

294

As molluses are slow moving the capture of these prey items was simple, though in the case of *T. fluviatilis* it took a short period of time to remove the individual from the surface of the aquarium. The handling method for *T. fluviatilis* initially involved picking up the individual with the chelae. Next the crab positioned the chelae on both sides of the aperture lip with the second pereiopods used to support the shell. In this position the crab pulled at both sides of the shell aperture using the chelae. During this process the crab would pause occasionally to

301 use one chela to pinch at the rear of the operculum where it is attached to columellar muscle at the dorsal end of the foot. After a period of time the operculum was released and, at this 302 point, the chela was used to remove the operculum with the majority flesh. The flesh was 303 304 then moved towards the mouth parts where the third and second maxillipeds were used to guide the flesh through the mouth. Once the majority of flesh was removed the crab 305 continued to pick at the empty shell removing any remnants of flesh inside. The crab 306 307 occasionally held the shell with its third maxillipeds as well as the chelae to allow scraping of the outside of the shell with the second maxillipeds. Eventually the crab abandoned the empty 308 309 shell.

310

The handling method for *R. peregra* started with the crab picking up the snail with the chelae 311 312 and then manipulating it into a position where it could begin removing the flesh from the shell. The crab then removed pieces of flesh through the aperture of the shell using one chela 313 whilst the other chela held on to the lip of the shell aperture. These pieces of flesh were then 314 passed to the mouthparts where the third and second maxillipeds were used to guide it 315 through the mouth. On occasions when all the flesh could not be removed through the 316 aperture, the crab would begin to break the shell of the snail along the lip of the aperture 317 using the chelae. Once sufficient shell had been detached the crab resumed removing the 318 319 flesh from the shell. When the majority of flesh had been separated, the crab continued to 320 pick at the empty shell remains removing any remnants of flesh. During handling when small chunks of flesh were removed the flagellum-like extension of the exopod on the third and 321 second maxillipeds were flicked constantly. Sample footage of handling methods for all three 322 323 prey species can be viewed at http://tinyurl.com/kqox89j

324

325 Handling Times

327	Handling time for of G. zaddachi prey was shown to be best related to crab carapace width	
328	with a significant negative linear regression ($R^2=0.381$, $P=0.004$) compared to the relation	
329	with average chela height (R^2 =0.315, P=0.01; see Fig. 5). Handling time for <i>T. fluviatilis</i> prey	
330	was best related to average chela height with a significant linear regression ($R^2=0.653$,	
331	P=0.005) compared to the relation with average carapace width (R^2 =0.332, P=0.081; see Fig.	
332	6). Similarly with <i>R. peregra</i> handling time was best related to average chela height	
333	(R^2 =0.397, P=0.038) compared to the relation with carapace width (R^2 =0.274, P=0.098; see	
334	Fig. 7).	
335		
336	There was a significant difference in handling times between the three prey species (χ^2 =29.663,	
336 337	There was a significant difference in handling times between the three prey species (χ^2 =29.663, P<0.001). The handling time of <i>G. zaddachi</i> was significantly shorter (< 300 secs) than <i>T</i> .	
337	P<0.001). The handling time of <i>G. zaddachi</i> was significantly shorter (< 300 secs) than <i>T</i> .	
337 338	P<0.001). The handling time of <i>G. zaddachi</i> was significantly shorter (< 300 secs) than <i>T. fluviatilis</i> (U=0, Z=-4.40, P<0.001, > 3000 secs) and <i>R. peregra</i> (U=6, Z=-4.29, P=0.003, ca.	
337 338 339	P<0.001). The handling time of <i>G. zaddachi</i> was significantly shorter (< 300 secs) than <i>T. fluviatilis</i> (U=0, Z=-4.40, P<0.001, > 3000 secs) and <i>R. peregra</i> (U=6, Z=-4.29, P=0.003, ca. 2000 secs). It was also found that the handling time for <i>R. peregra</i> was significantly shorter	
337 338 339 340	P<0.001). The handling time of <i>G. zaddachi</i> was significantly shorter (< 300 secs) than <i>T. fluviatilis</i> (U=0, Z=-4.40, P<0.001, > 3000 secs) and <i>R. peregra</i> (U=6, Z=-4.29, P=0.003, ca. 2000 secs). It was also found that the handling time for <i>R. peregra</i> was significantly shorter	

344 provided the highest rate of energy consumption being significantly higher than both *T*.

345 *fluviatilis* (U=0, Z=-4.38, P<0.001) and *R. peregra* (U=0, Z=-4.52, P<0.001). There was no

346 difference in the calculated rate of energy consumption between the two mollusc species

347 (U=38, Z=-0.317, P=0.749; see Fig. 9).

348

349 Discussion

351 This present study demonstrated that the amphipod Gammarus zaddachi and the molluscs Theodoxus fluviatilis and Radix peregra are consumed by sub-adult Chinese mitten crabs 352 under laboratory conditions. All three species are similar to prey items consumed in their SE 353 354 Asian native habitat where Eriocheir feed on snails and freshwater shrimp (Hymanson et al., 1999). Out of the three native UK species consumed, mitten crabs demonstrated a clear 355 preference for G. zaddachi and demonstrated considerable flexibility in handling strategies 356 between different types of prey. Similar flexibility in feeding behaviour for different types of 357 molluscan prey, linked to maximising feeding efficiency, has been demonstrated for *Cancer* 358 359 novaezelandiae (Creswell & McLay, 1990).

360

The results of this study showed that handling times for each of these prey species decreased 361 362 as crab sized increased. For the handling time of G. zaddachi it was shown crab carapace width, as an indication of mouth aperture size, provided the best fit as this was the most likely 363 limiting factor in prey handling. This is because G. zaddachi is relatively soft-bodied and of 364 relatively small size, so the chelae were not required beyond manipulating the prey towards 365 the mouthparts where it is dismembered and guided into the mouth. In comparison, for the 366 molluscs it was shown that chela height provided a better indicator of handling time as these 367 were used extensively in prey handling; either breaking through the operculum for T. 368 369 fluviatilis or the shell for R. peregra. The average handling time for each prey species showed 370 that G. zaddachi took a significantly shorter amount of time to handle compared to the two snail species. Between the two snail species handling time for T. fluviatilis was significantly 371 longer than R. peregra due to two factors; namely the presence of an operculum and having a 372 373 relatively thicker shell. This was shown during handling of T. fluviatilis where crabs were unable to break through the shell and had to resort to breaking through the operculum which 374 375 required more time. In comparison, when handling snails, other crab species primarily crush

376 the shell rather than pull the flesh from the aperture which shortens handling time (Zipser & Vermeji, 1978; Bertness & Cunningham, 1981; Schindler et al., 1994; Shigemiya, 2003; 377 Rochette et al., 2007). This behaviour of crushing a molluscan shell may not be possible in 378 379 sub-adult *E. sinensis* as they do not possess a distinct crushing chela and also, in the present study, the crabs were relatively small individuals (10-40mm carapace width). Carcinus 380 maenas and Callinectes sapidus Rathbun, 1896 can use a similar technique to that described 381 382 for *E. sinensis* given *R. peregra* when handling other species of snails. Both these species use their chelae to pull the flesh directly from the species of snail given though the aperture or 383 384 use their chelae to chip around the aperture to gain better access (Schindler et al., 1994; Rochette et al., 2007). Eriocheir sinensis showed unique methods for handling T. fluviatilis 385 compared to other species of crabs handling related species from the Family Neritidae. Ozius 386 387 verreauxii Saussure, 1853 and Eriphia squamata Stimpson, 1860 when failing to crush the 388 snail shell, break only the shelf of the shell allowing them to remove the operculum and then remove the flesh from the shell (Bertness & Cunningham, 1981). Another technique is used 389 390 by E. smithii MacLeay, 1838 and here the crab would break away the shell from the lip of the aperture until it could remove the flesh (Shigemiya, 2003). A possible explanation for why 391 Eriocheir sinensis did not display any of these techniques whilst handling T. fluviatilis is that 392 the individuals used were all sub-adults and consequently were not strong enough to break 393 394 the shell using their chelae.

395

Of the three prey species studied, mitten crabs preferred *G. zaddachi* which had shorter handling time and higher potential energy consumption rates. Furthermore these preference results suggest that despite the high abundance of both snail species in the habitat, crabs have little interest in consuming them, especially *R. peregra*. It is possible that the sub-adult crabs in this study chose prey based primarily on energy maximisation similar to what is found in

401 other species of decapods (Elner & Hughes, 1978; Hughes, & Seed, 1981; Gherardi et al., 1989; Weissburg, 1993). For example, when given equal amounts of both optimum prey 402 (providing the highest rate of energy acquisition) and suboptimum prey, C. maenas would 403 404 preferentially consume optimum prey at a frequency of 72% (Elner & Hughes, 1978). Of the two snail species used here, the mitten crabs slightly preferred T. fluviatilis even though this 405 involved a significantly longer handling time. A possible explanation for this is that T. 406 *fluviatilis* could have higher energy content than *R. peregra* as the latter has a lower energy 407 content of 12.33Jmg⁻¹ (Lien, 1978) which is below the average for three nerite species (*Nerita* 408 tessellata, N. versicolor and N. peloronta) of 20.48 Jmg⁻¹ (Hughes, 1971). However, there 409 was no difference in the rate of energy consumption between the two species of snails despite 410 411 *R. peregra* being easier to handle.

412

413 Feeding on the amphipod, G. zaddachi, involved the use of novel prey capture techniques, utilising well-developed spination on certain elements of the chelipeds (see Figs 3, 4). To our 414 415 knowledge this is the first description of the function of this ornamentation in this group of decapods. Even though there was a high preference G. zaddachi during these laboratory trials 416 it is possible that this prey would be difficult for sub-adult mitten crabs to catch in the wild as 417 they are highly mobile and are clearly not limited to the confines of an aquarium. During this 418 419 study, however, the sub-adults appeared to be competent at catching G. zaddachi. Another 420 factor that could increase the likelihood of capture in the wild is that G. zaddachi appeared in high numbers under rocks in exactly the same habitat where small mitten crabs were usually 421 encountered. It is also possible that G. zaddachi do not recognise the crabs as a potential 422 423 predator making them easier to catch, as it was noted in this study that individuals would swim under crabs often leading to their capture. This suggestion is based on findings for 424 another invasive decapod, the signal crayfish, Pacifastacus leniusculus, where the presence of 425

chemical cues from this species did not lower locomotory activity in gammarid prey whereas
chemical cues from fish did (Åbjörnsson et al, 2000). As the crabs are able to catch *G*. *zaddachi* it is entirely possible they are capable of catching other highly mobile prey. There
are reports that other species of crab do consume mobile amphipods (Williams, 1982; Stehlik,
1993; Buck et al., 2003; Griffen & Byers, 2006).

431

Whilst these trials were carried out under laboratory conditions, with a limited size range of 432 crabs, the results do demonstrate that this invasive species has the capacity for considerable 433 434 flexibility in its prey handling techniques. This may be linked to their considerable success in invading new habitats and exploiting new food resources (see Bentley, 2011). Furthermore in 435 the trials less obvious, fast-moving, targets were preferred and their capture utilised a 436 437 previously undescribed technique and, in the process, provide an explanation for the function 438 of cheliped spines. The present laboratory results also demonstrate the potential for this species to consume these prey types in the field and a flexibility in feeding behaviour, both of 439 440 which may be of concern when considering the potential impact on native biota. 441

442 Acknowledgements

443

We thank Seyit Ali Kamanli for help with field work and Jessica Webster for providing some
crab specimens. We also thank Neil Morley for assistance provided in the laboratory. The
photographs in this paper were taken by Harry Taylor, Natural History Museum Photo Unit.

Λ	Л	q
-	-	~

449	
450	References
451	
452	Åbjörnsson, K., J. Dahl, P. Nyström & C. Brönmark, 2000. Influence of predator and dietary
453	chemical cues on the behaviour and shedding efficiency of Gammarus pulex. Aquatic
454	Ecology 34: 379–387.
455	
456	ap Rheinallt, T., 1986. Size selection by the crab Liocarcinus puber feeding on mussels
457	Mytilus edulis and on shore crabs Carcinus maenas: the importance of mechanical factors.
458	Marine Ecology Progress Series 29: 45–53.
459	
460	Ashton, E. C., 2002. Mangrove sesarmid crab feeding experiments in Peninsular Malaysia.
461	Journal of Experimental Marine Biology and Ecology 273: 97–119.
462	
463	Bentley, M. G. 2011. The global spread of the Chinese mitten crab Eriocheir sinensis. pp.
464	107–128. In: Galil, B. S., Clark, P.F., & Carlton, J. D. In: the Wrong Place - Alien Marine
465	Crustaceans: Distribution, Biology and Impacts, Invading Nature - Springer Series in
466	Invasion Ecology 6, Springer.
467	
468	Bertness, M. D. & C. Cunningham, 1981. Crab shell-crushing predation and gastropod
469	architectural defence. Journal of Experimental Marine Biology and Ecology 50: 213-230.
470	
471	Buck, T. L., G. L. Breed, S. C. Pennings, M. E. Chase, M. Zimmer & T. H. Carefoot, 2003.
472	Diet choice in an omnivorous salt-marsh crab: different food types, body size, and habitat
473	complexity. Journal of Experimental Marine Biology and Ecology 292: 103-116.

475	Clark, P. F., P. S. Rainbow, R. S. Robbins, B. Smith, W. E. Yeoman, M. Thomas & G.
476	Dobson, 1998. The alien Chinese mitten crab Eriocheir sinensis (Crustacea: Decapoda:
477	Brachyura) in the Thames Catchment. Journal of the Marine Biological Society of the United
478	Kingdom 78: 1215–1221.
479	
480	Creswell, P. D. & C. L. McLay, 1990. Handling times, prey size and species selection in
481	Cancer novaezelandiae (Jacquinot, 1853) feeding on molluscan prey. Journal of
482	Experimental Marine Biology and Ecology 140: 13–28.
483	
484	Cuddington, K., & A. Hastings, 2004. Invasive engineers. Ecological Modelling 178: 3-4.
485	
486	Czerniejewski, P., A. Rybczyk & W. Wawrzyniak, 2010. Diet of the Chinese mitten crab,
487	Eriocheir sinensis H. Milne Edwards, 1853, and the potential effects of the crab on the
488	aquatic community in the river Odra/Oder estuary (NW. Poland). Crustaceana 83: 195–205.
489	
490	Daehler, C. & D. Strong, 1997. Hybridization between introduced cordgrass (Spartina
491	alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay,
492	California, USA. American Journal of Botany 84: 607–611.
493	
494	Dick, J. T. A., R. W. Elwood & W. A. Montgomery, 1995. The behavioural basis of a species
495	replacement: Differential aggression and predation between the introduced Gammarus pulex
496	and the native G. duebeni celticus (Amphipoda). Behavioural Ecology & Sociobiology 37:
497	393–398.
498	

499 Elner, R. W. & R. N. Hughes, 1978. Energy maximization in the diet of the shore crab,

500 *Carcinus maenas*. Journal of Animal Ecology 27: 103–116.

- 501
- 502 Erickson, A. A., I. C. Feller, V. J. Paul, L. M. Kwiatkowski & W. Lee, 2008. Selection of an
- omnivorous diet by the mangrove tree crab *Aratus pisonii* in laboratory experiments. Journal
 of Sea Research 99: 59–69.
- 505
- Freeman, A. S. & J. E. Byers, 2006. Divergent induced responses to an invasive predator in
 marine mussel populations. Science 313: 831–833.
- 508
- 509 Galil, B. S. 2008. Alien species in the Mediterranean Sea—which, when, where, why?
- 510 Hydrobiologia, 606, 105–116.
- 511
- 512 Geiger, W., P. Alcorlo, A. Baltanás & C. Montes, 2005. Impact of an introduced Crustacean
- 513 on the trophic webs of Mediterranean wetlands. Biological Invasions 7: 49–73.
- 514
- 515 Gherardi, F., F. Tarducci, & F. Micheli, 1989. Energy maximization and foraging strategies
- 516 in *Potamon fluviatile* (Decapoda, Brachyura). Freshwater Biology 22: 233–245.
- 517
- 518 Gilbey, V., M. J. Attrill & R. A. Coleman, 2008. Juvenile Chinese mitten crabs (Eriocheir
- *sinensis*) in the Thames estuary: distribution, movement and possible interactions with the
- 520 native crab *Carcinus maenas*. Biological Invasions 10: 67–77.
- 521

522	Grason, E. W. & Miner, B. G. (2012). Preference alters consumptive effects of predators:
523	Top-down effects of a native crab on a system of native and introduced prey. PLoS ONE 7:
524	e51322.

Griffen, B. D. & J. E. Byers, 2006. Partitioning mechanisms of predator interference in
different habitats. Oecologia 146: 608–614.

528

Haddaway, N. R., R. H. Wilcox, R. E. A. Heptonstall, H. M. Griffiths, R. J. G. Mortimer, M.

530 Christmas & A. M. Dunn, 2012. Predatory functional response and prey choice identify

531 predation differences between native/invasive and parasitised and unparasitised crayfish.

532 PLoS ONE 7: e32229.

533

Herborg, L. M., S. P. Rushton, A. S. Clare & M. G. Bentley, 2005. The invasion of the

535 Chinese mitten crab (*Eriocheir sinensis*) in the United Kingdom and its comparison to

536 continental Europe. Biological Invasions 7: 959–968.

537

Hudson, I. R. & B. D. Wigham, 2003. In situ observations of predatory feeding behaviour of

the galatheid squat lobster *Munida sarsi* using a remotely operated vehicle. Journal of the

540 Marine Biological Association of the United Kingdom 83: 463–464.

541

542 Hughes, R. N. 1971. Ecological energetics of *Nerita* (Archeogastropoda, Neritacea)

543 populations on Barbados, West Indies. Marine Biology 11: 12–22.

- 545 Hughes, R. N. & R. Seed, 1981. Size selection of mussels by the blue crab *Callinectes*
- *sapidus*: Energy maximizer or time minimizer? Marine Ecology Progress Series, 6, 83–89.

548	Hymanson, Z., Wang, J. & T. Sasaki, (1999). Lessons from the home of the Chinese mitten
549	crab. IEP Newsletter 12: 25–32.
550	
551	Jackson, A. C. & A. J. Underwood, 2007. Application of new techniques for the accurate
552	analysis of choice of prey. Journal of Experimental Marine Biology and Ecology 341: 1–9.
553	
554	Karatayev, A. Y., L. E., Burlakova, D. K., Padilla, S. E., Mastitsky & S. Olenin, 2009.
555	Invaders are not a random selection of species. Biological Invasions 11: 2009–2019.
556	
557	Kiesecker, J. M., A. R. Blaustein, & C. L. Miller, 2001. Potential mechanisms underlying the
558	displacement of native red-legged frogs by introduced bullfrogs. Ecology 82: 1964–1970.
559	
560	Laitano, M. V., N. E., Farías & M. Cledón, 2013. Prey preference of the stone crab
561	Platyxanthus crenulatus (Decapoda: Platyxanthidae) in laboratory conditions. Nauplius 21:
562	17–23.
563	
564	Landschoff, J., D. Lackschewitz, K. Kesy & K. Reise, 2013. Globalization pressure and
565	habitat change: Pacific rocky shore crabs invade armored shorelines in Atlantic Wadden Sea.
566	Aquatic Invasions 8: 77–87.
567	
568	Lien, L., 1978. The energy budget of the brown trout population of the Øvre Heimdalsvatn.
569	Holarctic Ecology 1: 279–300.
570	

571	Lilley J. H., L. Corenius & K. Söderhäll, 1997. RAPD evidence for the origin of crayfish
572	plague outbreaks in Britain. Aquaculture 157: 181–185.

574	Lowe, S., M. Browne, S. Boudjelas & M. De Poorter, 2000. 100 of the World's Worst	
575	Invasive Alien Species: A selection from the Global Invasive Species Database. Published by	
576	The Invasive Species Specialist Group (ISSG). First published as special lift-out in Aliens 12	
577	December 2000. Updated and reprinted version: November 2004.	
578		
579	McDonald, P. S., G. C. Jensen & D. A. Armstrong, 2001. The competitive and predatory	
580	impacts of the nonindigenous crab Carcinus maenas (L.) on early benthic phase Dungeness	
581	crab <i>Cancer magister</i> Dana. Journal of Experimental Marine Biology & Ecology 258: 39–54.	
582		
583	Nakata, K. & S. Goshima, 2006. Asymmetry in mutual predation between the endangered	
584	Japanese native crayfish Camdaroides japonicas and the North American invasive crayfish	
585	Pacifastacus leniusculus: A possible reason for species replacement. Journal of Crustacean	
586	Biology 26: 134–140.	
587		
588	Ranasinghe, J. A., T. K. Mikel, R. G. Verlarde, S. B. Weisberg, D. E. Montagne, D. B.	

589 Cadien & A. Dalkey, 2005. The prevalence of non-indigenous species in southern California

590 embayments and their effects on benthic macroinvertebrate communities. Biological

591 Invasions 7: 679–686.

592

Rochette, R., S. P. Doyle, & T. C. Edgell, 2007. Interaction between an invasive decapod and
a native gastropod: predator foraging tactics and prey architectural defences. Marine Ecology
Progress Series 330: 179–188.

597	Rossong, M. A., P. J. Williams, M. Comeau, S. C. Mitchell & J. Apaloo, 2006. Agonistic
598	interactions between the invasive green crab, Carcinus maenas (Linnaeus) and juvenile
599	American lobster, Homarus americanus (Milne Edwards). Journal of Experimental Marine
600	Biology & Ecology 329: 281–288.
601	
602	Rudnick, D. & V. Resh, 2005. Stable isotopes, mesocosms and gut content analysis
603	demonstrate trophic difference in two invasive decapod Crustacea. Freshwater Biology 50:
604	1323–1336.
605	
606	Rumohr, H., T. Brey & S. Ankar, 1987. A compilation of biometric conversion factors for
607	benthic invertebrates of the Baltic Sea. Baltic Marine Biology Publication 9: 1–56.
608	
609	Salo, P., E. Korpimäki, P. B. Banks, M. Nordström & C. R. Dickman, 2007. Alien predators
610	are more dangerous than native predators to prey populations. Proceedings of the Royal
611	Society B: Biological Sciences, 274, 1237–1243.
612	
613	Sanders, N. J., N. J. Gotelli, N. E. Heller, & D. M. Gordon, 2003. Community disassembly
614	by an invasive species. Proceedings of the National Academy of Sciences 100: 2474–2477.
615	
616	Schindler, D. E., B. M. Johnson, N. A. MacKay, N. Bouwes, & J. F. Kitchell, 1994. Crab:
617	snail size-structured interactions and salt marsh predation gradients. Oecologia 97: 49-61.
618	
619	Shigemiya, Y., 2003. Does the handedness of the pebble crab Eriphia smithii influence its
620	attack on two dextral snail species? Journal of Zoology 260: 259-265.

6	2	1
υ	2	т

622	Stehlik, L. L., 1993. Diets of the brachyuran crabs Cancer irroratus, C. borealis and Ovalipes
623	ocellatus in the New York Bight. Journal of Crustacean Biology 13: 723–735.
624	
625	Taplin, R. H., 2007. Experimental design and analysis to investigate predator preferences for
626	prey. Journal of Experimental Marine Biology and Ecology 344: 116-122.
627	
628	Walton, W. C., C. MacKinnon, L. F. Rodriquez, C. Proctor, & G. M. Ruiz, 2002. Effects of
629	an invasive crab upon a marine fishery: green crab, Carcinus maenas, predation upon a
630	venerid clam, Katelysia scalarina, in Tasmania (Australia). Journal of Experimental Marine
631	Biology & Ecology 272: 171–189.
632	
633	Webster, J. M., P. F. Clark, & D. Morritt, 2015. Laboratory based feeding behaviour of the
634	Chinese mitten crab, Eriocheir sinensis, (Crustacea: Decapoda, Brachyura, Varunidae): fish
635	egg consumption. Biological Invasions, 10: 313-326.
636	Weissburg, M., 1993. Sex and the single forager: Gender-specific energy maximization
637	strategies in fiddler crabs. Ecology 74: 279–291.
638	
639	Wiles, G. J., J. Bart, R. E. Beck Jr. & C. F. Aguon, 2003. Impacts of the brown tree snake:
640	Patterns of decline and specie persistence in Guam's avifauna. Conservation Biology 17:
641	1350–1360.
642	
643	Williams, M. J., 1982. Natural food and feeding in the commercial sand crab Portunus
644	pelagicus Linnaeus, 1766 (Crustacea : Decapoda : Portunidae) in Moreton Bay, Queensland.
645	Journal of Experimental Marine Biology and Ecology, 59, 165–176.

- 647 Zipser, E. & G. J. Vermeij, 1978. Crushing behaviour of tropical and temperate crabs. Journal
- of Experimental Marine Biology and Ecology 31: 155–172.

Appendix 1. Regression equations used to estimate wet weight (y) in grams for each prey

652 species from *G. zaddachi* body length or from shell length for snails (x) in millimetres (n=50)

Species	Regression equation	\mathbf{r}^2
G. zaddachi	y = 0.0164x - 0.0594	0.863
T. fluviatilis	y = 0.0468x - 0.2417	0.894
R. peregra	y = 0.0337x - 0.1773	0.856

Table 1

Percentage of occasions during preference trials where one or both of each prey were consumed

Prey consumed	Percentage of occurrence
G. zaddachi	100
T. fluviatilis	40
R. peregra	18
Both G. zaddachi	80
Both T. fluviatilis	20
Both R. peregra	6

Table 2

B Dry weight energy content for the prey species (shell free dry weight for snail)

Species	Energy Content (Jmg ⁻¹)	Author
G. zaddachi	15.16	Rumohr et al. (1987)
T. fluviatilis*	20.48	Hughes (1971)
R. peregra	12.33	Lien (1978)

671 *Average energy content for *Nerita sp.* (data for the most closely related species available in

672 literature).

677 678	Captions
679 680	Fig. 1
681	
682	Average preference score \pm SE for three prey species in sub-adult <i>Eriocheir sinensis</i> .
683	
684	Fig. 2
685	
686	Average preference score \pm SE for male and female <i>Eriocheir sinensis</i> preying on <i>T</i> .
687	fluviatilis and R. peregra.
688	
689	
690	Fig. 3
691	
692	Eriocheir sinensis H. Milne Edwards, 1853; NHM 1993:1, River Cray, Hall Place near
693	Crayford, Kent, collected B. Martin, 20 August 1992, right chela showing spines on internal
694	surface of propodus (circled). These spines are normally obscured by the mittens in male
695	crabs. Taken by Harry Taylor, NHM Photo Unit. Scale bar in mm divisions of 1 cm.
696	
697	Fig. 4
698	
699	Eriocheir sinensis H. Milne Edwards, 1853; NHM 1993:1, River Cray, Hall Place near
700	Crayford, Kent, collected B. Martin, 20 August 1992, showing the prey grasping co-
701	adaptation between spines on internal surface of the right chela propodus and those on the
702	merus (circled). These spines are normally obscured by the mittens in male crabs. Taken be
703	Harry Taylor, NHM Photo Unit. Scale bar in mm divisions of 1 cm.

704	
705	Fig. 5
706	
707	Handling time of <i>G. zaddachi</i> prey against A carapace width and B average chela height for
708	E. sinensis.
709	
710	Fig. 6
711	
712	Handling time of <i>T. fluviatilis</i> prey against A carapace width and B average chela height for
713	E. sinensis.
714	
715	Fig. 7
716	
717	Handling time of <i>R</i> . <i>peregra</i> prey against A carapace width and B average chela height for <i>E</i> .
718	sinensis.
719	
720	Fig. 8
721	
722	Average handling time: for <i>G. zaddachi</i> = total time to complete ingestion; for <i>T. fluviatilis</i>
723	time to complete ingestion comprising operculum removal (dark), handling empty shell
724	(white) and ingestion (light); and for <i>R. peregra</i> time to complete ingestion comprising
725	handling empty shell (white) and ingestion/shell removal (hatched).
726	
727	
728	

729	Fig. 9
730	
731	Average rate of energy consumption ± SE by sub-adult <i>Eriocheir sinensis</i> for three prey
732	species.
733	