2,244 research outputs found

    Towards the Secondary Bar: Gas Morphology and Dynamics in NGC 4303

    Get PDF
    The bulk of the molecular line emission in the double barred galaxy NGC4303 as observed in its CO(1-0) line with the OVRO mm-interferometer comes from two straight gas lanes which run north-south along the leading sides of the large-scale primary bar. Inside a radius of ~ 400 pc the molecular gas forms a spiral pattern which, for the northern arm, can be traced to the nucleus. Comparison of the OVRO and archival HST data with dynamical models of gas flow in the inner kiloparsec of single- and double-barred galaxies shows that the observed global properties of the molecular gas are in agreement with models for the gas flow in a strong, large-scale bar, and the two-arm spiral structure seen in CO in the inner kiloparsec can already be explained by a density wave initiated by the potential of that bar. Only a weak correlation between the molecular gas distribution and the extinction seen in the HST V-H map is found in the inner 400 pc of NGC4303: The innermost part of one arm of the nuclear CO spiral correlates with a weak dust filament in the color map, while the overall dust distribution follows a ring or single-arm spiral pattern well correlated with the UV continuum. This complicated nuclear geometry of the stellar and gaseous components allows for two scenarios: (A) A self-gravitating m=1 mode is present forming the spiral structure seen in the UV continuum. In this case the gas kinematics would be unaffected by the small (~ 4'') inner bar. (B) The UV continuum traces a complete ring which is heavily extincted north of the nucleus. Such a ring forms in hydrodynamic models of double bars, but the models cannot account for the UV emission observed on the leading side of the inner bar. (abridged)Comment: 47 pages, 14 figures, accepted for publication in Ap

    HCN Survey of Normal Spiral, IR-luminous and Ultraluminous Galaxies

    Full text link
    We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIRL_{\rm IR} and the HCN luminosity LHCNL_{\rm HCN} initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCNL_{\rm HCN} and the 12μ\mum luminosity; in fact, of all the four \IRAS bands, the 12μ\mum luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCOL_{\rm HCN}/L_{\rm CO} for galaxies with excess 12μ\mum emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (\approxgt 3\times 10^4/\tau cm3^{-3}) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCNL_{\rm HCN} may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCOL_{\rm HCN}/L_{\rm CO} may indicate the fraction of molecular gas that is dense.Comment: ApJS, May issue (final version, 12 pages + 5 figures + 4 tables). Fig. 2a,b,c and Fig. 3a,b are in GIF format due to the space limitation of astro-ph. Added an error-bar in both Fig. 4 and Fig. 5a. Please see the companion paper by Gao & Solomon (Paper II, astro-ph/0310339) for the detailed analysis and implications of this HCN surve

    Stellar Evolutionary Effects on the Abundances of PAH and SN-Condensed Dust in Galaxies

    Full text link
    Spectral and photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features, attributed to PAH molecules, and their metal abundance, leading to a deficiency of these features in low-metallicity galaxies. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of carbon dust into the ISM by AGB stars in the final post-AGB phase of their evolution. AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. We first determined the PAH abundance in galaxies by constructing detailed models of UV-to-radio SED of galaxies that estimate the contribution of dust in PAH-free HII regions, and PAHs and dust from photodissociation regions, to the IR emission. All model components: the galaxies' stellar content, properties of their HII regions, and their ionizing and non-ionizing radiation fields and dust abundances, are constrained by their observed multiwavelength spectrum. After determining the PAH and dust abundances in 35 nearby galaxies using our SED model, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.Comment: ApJ, 69 pages, 46 figures, Accepte

    Molecular Gas in M82: Resolving the Outflow and Streamers

    Get PDF
    We present a high-resolution (3.6'', 70pc) CO(1-0) mosaic of the molecular gas in M 82 covering an area of 2.5' x 3.5' (2.8kpc x 3.9kpc) obtained with the OVRO millimeter interferometer. The observations reveal the presence of huge amounts of molecular gas (> 70% of the total molecular mass, M_tot=1.3 x 10^9 M_sun) outside the central 1 kpc disk. Molecular streamers are detected in and below M82's disk out to distances from the center of 1.7 kpc. Some of these streamers are well correlated with optical absorption features; they form the basis of some of the prominent tidal HI features around M 82. This provides evidence that the molecular gas within M 82's optical disk is disrupted by the interaction with M 81. Molecular gas is found in M 82's outflow/halo, reaching distances up to 1.2 kpc below the plane; CO line-splitting has been detected for the first time in the outflow. The maximum outflow velocity is 230 km/s; we derive an opening angle of 55 deg for the molecular outflow cone. The total amount of gas in the outflow is >3 x 10^8 M_sun and its kinetic energy is of order 10^55 erg, about one percent of the estimated total mechanical energy input of M 82's starburst. Our study implies that extreme starburst environments can move significant amounts of molecular gas in to a galaxy's halo (and even to the intergalactic medium).Comment: accepted for publication in the ApJ Letters full PS file @ http://www.aoc.nrao.edu/~fwalter/walter_m82.p

    Status of cosmic-ray antideuteron searches

    Full text link
    The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron workshop", which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theoretical and experimental uncertainties of antideuteron production and propagation in our Galaxy, as well as give an experimental cosmic-ray antideuteron search status update. This report is a condensed summary of the article "Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron" (arXiv:1505.07785).Comment: 9 pages, 4 figures, ICRC 2015 proceeding

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa

    Formation of a Massive Black Hole at the Center of the Superbubble in M82

    Get PDF
    We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) interferometric observations of the central region (about 450 pc in radius) of M82 with the Nobeyama Millimeter Array, and have successfully imaged a molecular superbubble and spurs. The center of the superbubble is clearly shifted from the nucleus by 140 pc. This position is close to that of the massive black hole (BH) of >460 Mo and the 2.2 micron secondary peak (a luminous supergiant dominated cluster), which strongly suggests that these objects may be related to the formation of the superbubble. Consideration of star formation in the cluster based on the infrared data indicates that (1) energy release from supernovae can account for the kinetic energy of the superbubble, (2) the total mass of stellar-mass BHs available for building-up the massive BH may be much higher than 460 Mo, and (3) it is possible to form the middle-mass BH of 100-1000 Mo within the timescale of the superbubble. We suggest that the massive BH was produced and is growing in the intense starburst region.Comment: 9 pages, 3 figures, to appear in ApJ Lette

    Scanning near-field optical microscopy with aperture probes: Fundamentals and applications

    Get PDF
    In this review we describe fundamentals of scanning near-field optical microscopy with aperture probes. After the discussion of instrumentation and probe fabrication, aspects of light propagation in metal-coated, tapered optical fibers are considered. This includes transmission properties and field distributions in the vicinity of subwavelength apertures. Furthermore, the near-field optical image formation mechanism is analyzed with special emphasis on potential sources of artifacts. To underline the prospects of the technique, selected applications including amplitude and phase contrast imaging, fluorescence imaging, and Raman spectroscopy, as well as near-field optical desorption, are presented. These examples demonstrate that scanning near-field optical microscopy is no longer an exotic method but has matured into a valuable tool. (C) 2000 American Institute of Physics. [S0021-9606(00)70316-3]

    The Star Formation Rate and Dense Molecular Gas in Galaxies

    Full text link
    (abridged) HCN luminosity Lhcn is a tracer of DENSE molecular gas, n(H_2) >~ 3x10^4 cm^{-3}, associated with star-forming giant molecular cloud (GMC) cores. We present the results and analysis of our survey of HCN emission from 65 infrared galaxies including 9 ultraluminous infrared galaxies (ULIGs, Lir>10^{12}Lsun), 22 luminous infrared galaxies (LIGs, 10^{11}<Lir<~10^{12}Lsun) and 34 normal spiral galaxies with lower IR luminosity (most are large spiral galaxies). We have measured the global HCN line luminosity and the observations are reported in Gao and Solomon (2003, Paper I). This paper analyzes the relationships between the total far-IR luminosity a tracer of the star formation rate, the global HCN line luminosity a measure of the total DENSE molecular gas content, and the CO luminosity a measure of the total molecular content. We find a tight linear correlation between the IR and HCN luminosities Lir and Lhcn (in the log-log plot) with a correlation coefficient R=0.94. The IR--HCN linear correlation is valid over 3 orders of magnitude including ULIGs. The direct consequence of the linear IR--HCN correlation is that the star formation law in terms of DENSE molecular gas content has a power law index of 1.0. The global star formation rate is linearly proportional to the mass of dense molecular gas in normal spiral galaxies, LIGs, and ULIGs. This is strong evidence in favor of star formation as the power source in ultraluminous galaxies since the star formation in these galaxies appears to be normal and expected given their high mass of dense star-forming molecular gas.Comment: ApJ, May 1 issue (final version, 20 pages + 9 figures + 3 tables + appendix/refs.). Please see Gao & Solomon (Paper I, astro-ph/0310341) for the presentation and discussion of the HCN surve

    A multi-model study of the hemispheric transport and deposition of oxidised nitrogen.

    Get PDF
    Fifteen chemistry-transport models are used to quantify, for the first time, the export of oxidised nitrogen (NOy) to and from four regions (Europe, North America, South Asia, and East Asia), and to estimate the uncertainty in the results. Between 12 and 24% of the NOx emitted is exported from each region annually. The strongest impact of each source region on a foreign region is: Europe on East Asia, North America on Europe, South Asia on East Asia, and East Asia on North America. Europe exports the most NOy, and East Asia the least. East Asia receives the most NOy from the other regions. Between 8 and 15% of NOx emitted in each region is transported over distances larger than 1000 km, with 3–10% ultimately deposited over the foreign regions
    corecore