731 research outputs found

    Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective

    Get PDF
    Establishing predictive validity of measures is a major concern in marketing research. This paper investigates the conditions favoring the use of single items versus multi-item scales in ter

    On sl(2)-equivariant quantizations

    Full text link
    By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl(2)-equivariant quantization exists.Comment: 09 pages, LaTeX2e, no figures; to appear in Journal of Nonlinear Mathematical Physic

    Biopython: freely available Python tools for computational molecular biology and bioinformatics

    Get PDF
    Summary: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Availability: Biopython is freely available, with documentation and source code at www.biopython.org under the Biopython license. Contact: All queries should be directed to the Biopython mailing lists, see www.biopython.org/wiki/[email protected]

    Invariants of pseudogroup actions: Homological methods and Finiteness theorem

    Get PDF
    We study the equivalence problem of submanifolds with respect to a transitive pseudogroup action. The corresponding differential invariants are determined via formal theory and lead to the notions of k-variants and k-covariants, even in the case of non-integrable pseudogroup. Their calculation is based on the cohomological machinery: We introduce a complex for covariants, define their cohomology and prove the finiteness theorem. This implies the well-known Lie-Tresse theorem about differential invariants. We also generalize this theorem to the case of pseudogroup action on differential equations.Comment: v2: some remarks and references addee

    Hamiltonian evolutions of twisted gons in \RP^n

    Full text link
    In this paper we describe a well-chosen discrete moving frame and their associated invariants along projective polygons in \RP^n, and we use them to write explicit general expressions for invariant evolutions of projective NN-gons. We then use a reduction process inspired by a discrete Drinfeld-Sokolov reduction to obtain a natural Hamiltonian structure on the space of projective invariants, and we establish a close relationship between the projective NN-gon evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that {any} Hamiltonian evolution is induced on invariants by an evolution of NN-gons - what we call a projective realization - and we give the direct connection. Finally, in the planar case we provide completely integrable evolutions (the Boussinesq lattice related to the lattice W3W_3-algebra), their projective realizations and their Hamiltonian pencil. We generalize both structures to nn-dimensions and we prove that they are Poisson. We define explicitly the nn-dimensional generalization of the planar evolution (the discretization of the WnW_n-algebra) and prove that it is completely integrable, providing also its projective realization

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    Classification tree to analyze factors connected with post operative complications of cataract surgery in a teaching hospital

    Get PDF
    Background: Artificial intelligence (AI) is becoming ever more frequently applied in medicine and, consequently, also in ophthalmology to improve both the quality of work for physicians and the quality of care for patients. The aim of this study is to use AI, in particular classification tree, for the evaluation of both ocular and systemic features involved in the onset of complications due to cataract surgery in a teaching hospital. Methods: The charts of 1392 eyes of 1392 patients, with a mean age of 71.3 ± 8.2 years old, were reviewed to collect the ocular and systemic data before, during and after cataract surgery, including post-operative complications. All these data were processed by a classification tree algorithm, producing more than 260 million simulations, aiming to develop a predictive model. Results: Postoperative complications were observed in 168 patients. According to the AI analysis, the pre-operative characteristics involved in the insurgence of complications were: ocular comorbidities, lower visual acuity, higher astigmatism and intra-operative complications. Conclusions: Artificial intelligence application may be an interesting tool in the physician’s hands to develop customized algorithms that can, in advance, define the post-operative complication risk. This may help in improving both the quality and the outcomes of the surgery as well as in preventing patient dissatisfaction

    Freeze-out configuration properties in the 197Au + 197Au reaction at 23 AMeV

    Full text link
    Data from the experiment on the 197Au + 197Au reaction at 23 AMeV are analyzed with an aim to find signatures of exotic nuclear configurations such as toroid-shaped objects. The experimental data are compared with predictions of the ETNA code dedicated to look for such configurations and with the QMD model. A novel criterion of selecting events possibly resulting from the formation of exotic freeze-out configurations, "the efficiency factor", is tested. Comparison between experimental data and model predictions may indicate for the formation of flat/toroidal nuclear systems

    A theoretical investigation of ferromagnetic tunnel junctions with 4-valued conductances

    Full text link
    In considering a novel function in ferromagnetic tunnel junctions consisting of ferromagnet(FM)/barrier/FM junctions, we theoretically investigate multiple valued (or multi-level) cell property, which is in principle realized by sensing conductances of four states recorded with magnetization configurations of two FMs; that is, (up,up), (up,down), (down,up), (down,down). To obtain such 4-valued conductances, we propose FM1/spin-polarized barrier/FM2 junctions, where the FM1 and FM2 are different ferromagnets, and the barrier has spin dependence. The proposed idea is applied to the case of the barrier having localized spins. Assuming that all the localized spins are pinned parallel to magnetization axes of the FM1 and FM2, 4-valued conductances are explicitly obtained for the case of many localized spins. Furthermore, objectives for an ideal spin-polarized barrier are discussed.Comment: 9 pages, 3 figures, accepted for publication in J. Phys.: Condens. Matte

    Automated track recognition and event reconstruction in nuclear emulsion

    Get PDF
    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject background and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities ∌1100) produced by the 158 GeV/c per nucleon 208Pb beam at CERN. Automatically measured events agree with our best manual measurements on 97% of all the tracks. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties
    • 

    corecore