218 research outputs found

    Determination of protein content in cooked foods consumed by toddlers aged 1-2 years in Sri Lanka

    Get PDF
    In early life, protein deficiency as well as heavy protein intake cause adverse conditions. Therefore, the present study aimed to assess the protein adequacy of diets in 1-2-year-old toddlers in the Alawwa Medical Officer of Health (MOH) area, Kurunegala, Sri Lanka. Data on food consumption was obtained by 24-hour dietary recall method from selected caregivers (n=60) andcommonly consumed foods (n=30) were cooked using household preparation protocols practiced in the area. They were homogenized and analyzed for protein. The majority of toddlers among the selected population consumed rice-based meals (73%) as the main meal (cooked rice with vegetable accompaniments), while 27% preferred mixed diets (a mixture of vegetables, pulses, leafy vegetables and fish along with rice). A serving of commercial cereal products provided the highest estimateddaily intake (EDI) of protein (10.70 Β± 0.40 g). The average EDI of protein of all categories of foods per portion (rice, vegetables, pulses, green leaves, fish, eggs, rice mixtures and cereal products) was 31.55 Β± 0.88 g, contributing to the recommended dietary allowance (RDA) of 242.64% and 150.17% for 1-2 year toddlers as defined by the Department of Agriculture, United States (USDA) and Sri Lankan RDA defined by Medical Research Institute (MRI), respectively. In conclusion, the cooked foods prepared according to local recipes fulfilled the dietary requirements of protein for toddlers aged 1-2 years in the Alawwa MOH area following USDA and Sri Lankan nutrition guidelines. Keywords: Estimated Daily Intake, Protein, Recommended Dietary Allowance, Toddler

    Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells

    Get PDF
    BACKGROUND: The growth of new blood vessels in adult life requires the initiation of endothelial cell migration and proliferation from pre-existing vessels in addition to the recruitment and differentiation of circulating endothelial progenitor cells. Signals emanating from growth factors and the extracellular matrix are important in regulating these processes. RESULTS: Here we report that fibronectin (FN) and vitronectin (VN) modulate the responses of endothelial cells to HGF (Scatter Factor), an important pro-angiogenic mediator. Novel binding sites for HGF were identified on both FN and VN that generate molecular complexes with enhanced biological activity and these were identified in the supernatants of degranulated platelet suspensions implicating their release and formation in vivo. In the absence of co-stimulation with an ECM glycoprotein, HGF could not promote endothelial cell migration but retained the capacity to induce a proliferative response utilising the Map kinase pathway. Through promoting Met-Integrin association, HGF-FN and HGF-VN complexes coordinated and enhanced endothelial cell migration through activation of the PI-3 kinase pathway involving a Ras-dependent mechanism whereas a Ras-independent and attenuated migratory response was promoted by co-stimulation of cells with HGF and a non-binding partner ECM glycoprotein such as collagen-1. CONCLUSIONS: These studies identify a novel mechanism and pathway of HGF signalling in endothelial cells involving cooperation between Met and integrins in a Ras dependent manner. These findings have implications for the regulation of neovascularization in both health and disease

    Mechanotransduction and growth factor signalling to engineer cellular microenvironments

    Get PDF
    Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing

    Endothelial progenitor cells and integrins: adhesive needs

    Get PDF
    In the last decade there have been multiple studies concerning the contribution of endothelial progenitor cells (EPCs) to new vessel formation in different physiological and pathological settings. The process by which EPCs contribute to new vessel formation in adults is termed postnatal vasculogenesis and occurs via four inter-related steps. They must respond to chemoattractant signals and mobilize from the bone marrow to the peripheral blood; home in on sites of new vessel formation; invade and migrate at the same sites; and differentiate into mature endothelial cells (ECs) and/or regulate pre-existing ECs via paracrine or juxtacrine signals. During these four steps, EPCs interact with different physiological compartments, namely bone marrow, peripheral blood, blood vessels and homing tissues. The success of each step depends on the ability of EPCs to interact, adapt and respond to multiple molecular cues. The present review summarizes the interactions between integrins expressed by EPCs and their ligands: extracellular matrix components and cell surface proteins present at sites of postnatal vasculogenesis. The data summarized here indicate that integrins represent a major molecular determinant of EPC function, with different integrin subunits regulating different steps of EPC biology. Specifically, integrin Ξ±4Ξ²1 is a key regulator of EPC retention and/or mobilization from the bone marrow, while integrins Ξ±5Ξ²1, Ξ±6Ξ²1, Ξ±vΞ²3 and Ξ±vΞ²5 are major determinants of EPC homing, invasion, differentiation and paracrine factor production. Ξ²2 integrins are the major regulators of EPC transendothelial migration. The relevance of integrins in EPC biology is also demonstrated by many studies that use extracellular matrix-based scaffolds as a clinical tool to improve the vasculogenic functions of EPCs. We propose that targeted and tissue-specific manipulation of EPC integrin-mediated interactions may be crucial to further improve the usage of this cell population as a relevant clinical agent

    Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells

    Get PDF
    Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI might positively affect stem cell adhesion and proliferation at the site of injury. Therefore, we investigated the kinetics of attachment and proliferation of adipose-tissue-derived stem cells (ASC) on fibronectin and analysed the time frame and localization of fibronectin accumulation in the human heart after MI. ASCs were seeded onto fibronectin-coated and uncoated culture wells. The numbers of adhering ASC were quantified after various incubation periods (5-30 min) by using DNA quantification assays. The proliferation of ASC was quantified after culturing ASC for various periods (0-9 days) by using DNA assays. Fibronectin accumulation after MI was quantified by immunohistochemical staining of heart sections from 35 patients, after different infarction periods (0-14 days old). We found that ASC attachment and proliferation on fibronectin-coated culture wells was significantly higher than on uncoated wells. Fibronectin deposition was significantly increased from 12 h to 14 days post-infarction, both in the infarction area and in the border-zone, compared with the uninfarcted heart. Our results suggest that a positive effect of fibronectin on stem cells in the heart can only be achieved when stem cell therapy is applied at least 12 h after MI, when the accumulation of fibronectin occurs in the infarcted heart. Β© 2008 The Author(s)

    Anti-oncostatin M antibody inhibits the pro-malignant effects of oncostatin M receptor overexpression in squamous cell carcinoma.

    Get PDF
    The oncostatin M (OSM) receptor (OSMR) shows frequent gene copy number gains and overexpression in cervical squamous cell carcinomas (SCCs), associated with adverse clinical outcomes. In SCC cells that overexpress OSMR, the major ligand OSM induces multiple pro-malignant effects, including invasion, secretion of angiogenic factors, and metastasis. Here, we demonstrate, for the first time, that OSMR overexpression in SCC cells activates cell-autonomous feed-forward signalling, via further expression of OSMR and OSM and sustained STAT3 activation, despite expression of the negative regulator suppressor of cytokine signalling 3 (SOCS3). The pro-malignant effects associated with OSMR overexpression are critically mediated by JAK-STAT3 activation, which is induced by exogenous OSM and also by autocrine OSM-OSMR interactions. Importantly, specific inhibition of OSM-OSMR interactions by neutralizing antibodies significantly inhibits STAT3 activation and feed-forward signalling, leading to reduced invasion, angiogenesis, and metastasis. Our findings are supported by data from 1254 clinical SCC samples, in which OSMR levels correlated with multiple cognate genes, including OSM, STAT3, and downstream targets. These data strongly support the development of OSM-OSMR-blocking antibodies as biologically targeted therapies against SCCs of the cervix and other anatomical sites. Copyright Β© 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Angiogenesis in Differentiated Placental Multipotent Mesenchymal Stromal Cells Is Dependent on Integrin Ξ±5Ξ²1

    Get PDF
    Human placental multipotent mesenchymal stromal cells (hPMSCs) can be isolated from term placenta, but their angiogenic ability and the regulatory pathways involved are not known. hPMSCs were shown to express integrins Ξ±v, Ξ±4, Ξ±5, Ξ²1, Ξ²3, and Ξ²5 and could be induced to differentiate into cells expressing endothelial markers. Increases in cell surface integrins Ξ±5 and Ξ²1, but not Ξ±4, Ξ±vΞ²3, or Ξ±vΞ²5, accompanied endothelial differentiation. Vascular endothelial growth factor-A augmented the effect of fibronectin in enhancing adhesion and migration of differentiated hPMSC through integrin Ξ±5Ξ²1, but not Ξ±vΞ²3 or Ξ±vΞ²5. Formation of capillary-like structures in vitro from differentiated cells was inhibited by pre-treatment with function-blocking antibodies to integrins Ξ±5 and Ξ²1. When hPMSCs were seeded onto chick chorioallantoic membranes (CAM), human von Willebrand factor-positive cells were observed to engraft in the chick endothelium. CAMs transplanted with differentiated hPMSCs had a greater number of vessels containing human cells and more incorporated cells per vessel compared to CAMs transplanted with undifferentiated hPMSCs, and overall angiogenesis was enhanced more by the differentiated cells. Function-blocking antibodies to integrins Ξ±5 and Ξ²1 inhibited angiogenesis in the CAM assay. These results suggest that differentiated hPMSCs may contribute to blood vessel formation, and this activity depends on integrin Ξ±5Ξ²1

    Early Embryonic Vascular Patterning by Matrix-Mediated Paracrine Signalling: A Mathematical Model Study

    Get PDF
    During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling

    Novel regulators of human gonadal development

    Get PDF
    The production of viable germ cells during human embryonic development determines adult reproductive success. This is particularly true for females, as development of germ cells (GCs) into primordial follicles before birth is imperative for future fertility. During fetal development GCs migrate to the genital ridge to form the gonad, after which several tightly regulated events, including proliferation, differentiation, and association with somatic cells, must occur to form a functional gonad. In the ovary these processes also include the initiation and subsequent arrest of meiosis. These developmental processes are orchestrated by local autocrine and paracrine factors, many of which remain to be identified in the human. In order to decipher further the pathways by which the gonad and GCs develop, potential regulators including prostaglandin (PG) E2, the interleukin (IL)6-type cytokines, and the prokinetecins (PROKs), were examined in the human fetal ovary and PROKs in the human fetal testis. Patterns of gene expression, protein localisation, function, and interaction of the potential mediators throughout human development (8-20 weeks gestation) were determined. Primary fetal tissue was investigated, in addition to immortalized GCs (T-Cam2 cells) and a murine model of fetal ovarian development. PGE2 interacts with known regulators of GC development in non-reproductive organs. It was postulated PGE2 may regulate GC progression by modulating these factors. Examination of PGE2 receptors and precursor enzymes in the fetal ovary revealed that all were present and some were developmentally regulated, with mRNA expression increasing with gestation. These developmentally regulated components were localised to the GCs. The PGE2 receptors were among those differentially expressed, with one localised solely to mature GCs. Culture of human fetal ovary confirmed that PGE2 regulates known regulators of GC development, increasing expression of survival and anti-apoptotic factors. To test the hypothesis that PGE2 is necessary for female GC development, paracetamol, an inhibitor of PGE2 precursor enzymes, was utilised in a murine model of fetal exposure. Fetal ovaries from this experiment displayed disruption of normal development. The IL6-type cytokines are also postulated to be involved in early gonad development, and are known to regulate proliferation and differentiation of mouse embryonic stem and GCs in vitro. A significant increase in transcript levels of the shared receptor components was determined in second trimester human ovaries, as well as developmental increases of several of the IL6-type ligands. Both common receptor components were located specifically in the GCs identifying them as the target of IL6 action in the human fetal ovary. The PROKs regulate cell migration, proliferation and differentiation, and modulate secretion of PGE2 and expression of some IL6-type cytokines. To-date, PROKs have not been examined in the human fetal gonad. Transcript levels were higher in the fetal testis compared to the ovary, with receptor and ligand components increasing with gestation. Most components also increased with gestation in the ovary. However, location of PROK components was strikingly different between the two tissues, with GCs being the primary target of PROK action in the fetal ovary, and Leydig and interstitial cells being the target in the testis. PROKs interaction with other regulators of gonad development was examined utilising a GC line in the case of the ovary and primary interstitial cell cultures in the case of the testis. These studies have identified new factors involved in human fetal gonad development, and how they interact with known regulatory pathways of development

    The Extracellular Matrix and Blood Vessel Formation: Not Just a Scaffold

    Get PDF
    The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation
    • …
    corecore