11 research outputs found

    Warming Overcomes Dispersal-Limitation to Promote Non-native Expansion in Lake Baikal

    Get PDF
    Non-native species and climate change pose serious threats to global biodiversity. However, the roles of climate, dispersal, and competition are difficult to disentangle in heterogeneous landscapes. We combine empirical data and theory to examine how these forces influence the spread of non-native species in Lake Baikal. We analyze the potential for Daphnia longispina to establish in Lake Baikal, potentially threatening an endemic, cryophillic copepod Epischurella baikalensis. We collected field samples to establish current community composition and compared them to model predictions informed by flow rates, present-day temperatures, and temperature projections. Our data and model agree that expansion is currently limited by dispersal. However, projected increases in temperature reverse this effect, allowing D. longispina to establish in Lake Baikal’s main basin. A strong negative impact emerges from the interaction between climate change and dispersal, outweighing their independent effects. Climate, dispersal, and competition have complex, interactive effects on expansion with important implications for global biodiversity

    Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient

    Get PDF
    Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotelysensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated the scale dependency of community assembly processes and examined whether tropical forest productivitycould be predicted by remotely sensed functional diversity. Functional richness of the community decreased withincreasing elevation. Scale-dependent signals of trait convergence, consistent with environmental filtering, play animportant role in explaining the range of trait variation within each site and along elevation. Single- and multitraitremotely sensed measures of functional diversity were important predictors of variation in rates of net and grossprimary productivity. Our findings highlight the potential of remotely sensed functional diversity to inform trait-based ecology and trait diversity-ecosystem function linkages in hyperdiverse tropical forests.Fil: Durán, Sandra M.. University of Arizona; Estados UnidosFil: Martin, Roberta E.. Arizona State University; Estados UnidosFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Maitner, Brian S.. Arizona State University; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino UnidoFil: Salinas, Norma. University of Oxford; Reino Unido. Pontificia Universidad Católica de Perú; PerúFil: Shenkin, Alexander. University of Oxford; Reino UnidoFil: Silman, Miles R.. Wake Forest University; Estados UnidosFil: Wieczynski, Daniel J.. University of Oxford; Reino UnidoFil: Asner, Gregory P.. Arizona State University; Estados UnidosFil: Bentley, Lisa Patrick. Sonoma State University; Estados UnidosFil: Savage, Van M.. University of California; Estados UnidosFil: Enquist, Brian J.. Arizona State University; Estados Unido

    Data from: Environmental fluctuations promote intraspecific diversity and population persistence via inflationary effects

    No full text
    The impact of temporal variation in the environment, specifically the amount of temporal autocorrelation, on population processes is of growing interest in ecology and evolutionary biology. It was recently discovered that temporal autocorrelation in the environment can significantly increase the abundance of populations that would otherwise have low, or even negative long-term growth rates (via so-called ‘inflationary effects’), provided that immigration from another source prevents extinction. Here we use a mathematical model to ask whether inflationary effects can also increase population persistence without immigration if different phenotypes within that population partition growth over time and buffer each other from extinction via mutation. Using a combination of analytical and numerical methods, we find that environmental autocorrelation can inflate the abundance of phenotypes that would otherwise be excluded from the population, provided that phenotypes are sufficiently different in their use of the environment. This inflation of abundance at the phenotypic level also generates an inflation of abundance at the population level. Remarkably, intraspecific inflationary effects can increase both phenotypic and whole population abundance even if one or all phenotypes are maladapted to the environment, as long as mutations prevent phenotypic extinction during periods of poor environmental conditions. Given the prevalence of temporally autocorrelated environmental variables in nature, intraspecific inflationary effects have the potential to be of widespread importance for population persistence as well as the maintenance of intraspecific diversity

    main data file

    No full text
    IIEdata.tar.gz is a zip file that contains all of the simulation data files

    IIEdata

    No full text
    IIEdata.nb is a Mathematica notebook file containing the scripts for manipulating and graphing the raw data files contained in IIEdata.tar.gz

    Viral infections likely mediate microbial controls on ecosystem responses to global warming

    No full text
    Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging—if not impossible—without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands—globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs

    Viral infections likely mediate microbial controls on ecosystem responses to global warming

    No full text
    Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging-if not impossible-without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands-globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs
    corecore