39 research outputs found

    Ubiquitin signals the demise of AMPA receptors

    Get PDF

    GTF2IRD2 from the Williams-Beuren critical region encodes a mobile-element-derived fusion protein that antagonizes the action of its related family members

    Get PDF
    GTF2IRD2 belongs to a family of transcriptional regulators (including TFII-I and GTF2IRD1) that are responsible for many of the key features of Williams-Beuren syndrome (WBS). Sequence evidence suggests that GTF2IRD2 arose in eutherian mammals by duplication and divergence from the gene encoding TFII-I. However, in GTF2IRD2, most of the C-terminal domain has been lost and replaced by the domesticated remnant of an in-frame hAT-transposon mobile element. In this first experimental analysis of function, we show that transgenic expression of each of the three family members in skeletal muscle causes significant fiber type shifts, but the GTF2IRD2 protein causes an extreme shift in the opposite direction to the two other family members. Mating of GTF2IRD1 and GTF2IRD2 mice restores the fiber type balance, indicating an antagonistic relationship between these two paralogs. In cells, GTF2IRD2 localizes to cytoplasmic microtubules and discrete speckles in the nuclear periphery. We show that it can interact directly with TFII-IÎ’ and GTF2IRD1, and upon co-transfection changes the normal distribution of these two proteins into a punctate nuclear pattern typical of GTF2IRD2. These data suggest that GTF2IRD2 has evolved as a regulator of GTF2IRD1 and TFII-I; inhibiting their function by direct interaction and sequestration into inactive nuclear zones

    Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice

    Get PDF
    Background RNA-directed regulation of epigenetic processes has recently emerged as an important feature of mammalian differentiation and development. Perturbation of this regulatory system in the brain may contribute to the development of neuropsychiatric disorders. Methods RNA sequencing was used to identify changes in the experience-dependent expression of long noncoding RNAs (lncRNAs) within the medial prefrontal cortex of adult mice. Transcripts were validated by real-time quantitative polymerase chain reaction and a candidate lncRNA, Gomafu, was selected for further investigation. The functional role of this schizophrenia-related lncRNA was explored in vivo by antisense oligonucleotide-mediated gene knockdown in the medial prefrontal cortex, followed by behavioral training and assessment of fear-related anxiety. Long noncoding RNA-directed epigenetic regulation of gene expression was investigated by chromatin and RNA immunoprecipitation assays. Results RNA sequencing analysis revealed changes in the expression of a significant number of genes related to neural plasticity and stress, as well as the dynamic regulation of lncRNAs. In particular, we detected a significant downregulation of Gomafu lncRNA. Our results revealed that Gomafu plays a role in mediating anxiety-like behavior and suggest that this may occur through an interaction with a key member of the polycomb repressive complex 1, BMI1, which regulates the expression of the schizophrenia-related gene beta crystallin (Crybb1). We also demonstrated a novel role for Crybb1 in mediating fear-induced anxiety-like behavior. Conclusions Experience-dependent expression of lncRNAs plays an important role in the epigenetic regulation of adaptive behavior, and the perturbation of Gomafu may be related to anxiety and the development of neuropsychiatric disorders

    The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity

    No full text
    Research over the past decade has provided strong support for the importance of various epigenetic mechanisms, including DNA and histone modifications in regulating activity-dependent gene expression in the mammalian central nervous system. More recently, the emerging field of epitranscriptomics revealed an equally important role of post-transcriptional RNA modifications in shaping the transcriptomic landscape of the brain. This review will focus on the methylation of the adenosine base at the N6 position, termed N methyladenosine (m6A), which is the most abundant internal modification that decorates eukaryotic messenger RNAs. Given its prevalence and dynamic regulation in the adult brain, the m6A-epitranscriptome provides an additional layer of regulation on RNA that can be controlled in a context- and stimulus-dependent manner. Conceptually, m6A serves as a molecular switch that regulates various aspects of RNA function, including splicing, stability, localization or translational control. The versatility of m6A function is typically determined through interaction or disengagement with specific classes of m6A-interacting proteins. Here we review recent advances in the field and provide insights into the roles of m6A in regulating brain function, from development to synaptic plasticity, learning and memory. We also discuss how aberrant m6A signaling may contribute to neurodevelopmental and neuropsychiatric disorders. This article is protected by copyright. All rights reserved

    Amyloid-β-induced dysregulation of AMPA receptor trafficking

    No full text
    Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ

    Molecular analysis of GTF2IRD1: a protein implicated in the neurobehavioural features of Williams-Beuren Syndrome

    Full text link
    Williams-Beuren syndrome (WBS)is a complex neurodevelopmental disorder that results from a hemizygous deletion of 28 genes within human chromosome 7q11.23. WBS involves specific cognitive and behavioural features that are collectively called the Williams syndrome cognitive profile (WSCP) Genotype-phenotype correlations in patients with atypical deletions have implicated two members of the GTF2Iprotein family, GTF2IRD1and TFII-Iin the main aspects of the WSCP. We and others have generated Gtf2ird1 knockout mouse lines that show developmental and neurological abnormalities, social and non-social anxiety-related behavioural changes, reminiscent of the WSCP. In the mouse brain, Gtf2ird1 is expressed in a spatial pattern that largely overlaps with concentrations of GABAergic cell types, the major inhibitory neurons in the brain. However, the molecular function of GTF2IRD1is poorly understood. It was the aim of the work shown in this thesis to improve the understanding of molecular and cellular mechanisms of GTF2IRD1function, specifically by investigating i) potential target genes of GTF2IRD1through microarray analyses; ii) novel protein partners of GTF2IRD1via yeast-two hybrid screening and iii) the post-translational modification of GTF2IRD1by SUMOylation These studies have achieved their aims in a number of different ways. A lack of evidence for major transcriptional changes in the brains of Gtf2ird1 knockout mice and for directly regulated target genes has led to a reappraisal of the initial proposed function of GTF2IRD1as a conventional DNA-binding transcription factor. Instead, a role in chromatin remodeling is suggested by its interaction with novel proteins whose functions are associated with histone modification. Furthermore, this work has demonstrated that GTF2IRD1is modified by SUMOylation, which enhances its interaction with a chromatin-associated protein, ZMYMS. SUMOylation of GTF2IRD1, in itself, supports the newly proposed function of epigenetic regulation due to the extensive involvement of SUMOylation in chromatin biology. Epigenetic control through chromatin remodeling in the nervous system is rapidly growing as an important topic in the development of cognition, learning and neuropsychiatric disorders. The work in this thesis suggests that GTF21RD1 may contribute to these mechanisms and the disruption to such systems by GTF21RD1 absence may explain some of the neurobehavioural features of WBS

    Regulation of AMPA receptor trafficking by protein ubiquitination

    No full text
    The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs) is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer's disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer's disease, chronic stress and epilepsy

    PACSIN1 regulates the dynamics of AMPA receptor trafficking

    No full text
    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons

    Subunit-specific augmentation of AMPA receptor ubiquitination by phorbol ester

    No full text
    Excitatory neurotransmission relies on the precise targeting of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to the neuronal plasma membrane. Activity-dependent ubiquitination of AMPA receptor (AMPAR) subunits sorts internalised receptors to late endosomes for degradation, which ultimately determines the number of AMPARs on neuronal membrane. Our recent study has demonstrated a functional cross-talk between the phosphorylation and ubiquitination of the GluA1 subunit in mammalian central neurons. However, the existence of such a cross modulation for the GluA2 subunit remains unknown. Here, we have shown that bicuculline induced GluA2 ubiquitination on the same lysine residues (Lys-870 and Lys-882) in the C-terminal as those elicited by the AMPA treatment. Interestingly, bicuculline-induced ubiquitination was markedly enhanced by the phospho-mimetic GluA2 S880E mutant. Pharmacological activation of protein kinase C (PKC) by phorbol ester, which mediates the phosphorylation of GluA2 at Ser-880, augmented bicuculline-induced ubiquitination of GluA2 in cultured neurons. This effect was specific for the GluA2 subunit because phorbol ester did not alter the level of GluA1 ubiquitination. However, phorbol ester-induced enhancement of GluA2 ubiquitination did not require Ser-880 phosphorylation. This suggests that pseudo-phosphorylation of Ser-880 is sufficient but is not necessary for the augmentation of bicuculline-induced GluA2 ubiquitination. Collectively, these data provide the first demonstration of subunit-specific modulation of AMPAR ubiquitination by the PKC-dependent signalling pathway in mammalian central neurons

    Ubiquitination regulates the proteasomal degradation and nuclear translocation of the fat mass and obesity-associated (FTO) protein

    No full text
    Genetic polymorphisms in the fat mass and obesity-associated (FTO) gene have been strongly associated with obesity in humans. The cellular level of FTO is tightly regulated, with alterations in its expression influencing energy metabolism, food intake and body weight. Although the proteasome system is involved, the cellular mechanism underlying FTO protein turnover remains unknown. Here, we report that FTO undergoes post-translational ubiquitination on Lys-216. Knock-in HeLa cells harboring the ubiquitin-deficient K216R mutation displayed a slower rate of FTO turnover, resulting in an increase in the level of FTO as well as enhanced phosphorylation of the ribosomal S6 kinase. Surprisingly, we also found that K216R mutation reduced the level of nuclear FTO and completely abolished the nuclear translocation of FTO in response to amino acid starvation. Collectively, our results reveal the functional importance of ubiquitination in controlling FTO expression and localization, which may be crucial for determining body mass and composition
    corecore