3,453 research outputs found
Universality of Load Balancing Schemes on Diffusion Scale
We consider a system of parallel queues with identical exponential
service rates and a single dispatcher where tasks arrive as a Poisson process.
When a task arrives, the dispatcher always assigns it to an idle server, if
there is any, and to a server with the shortest queue among randomly
selected servers otherwise . This load balancing scheme
subsumes the so-called Join-the-Idle Queue (JIQ) policy and the
celebrated Join-the-Shortest Queue (JSQ) policy as two crucial
special cases. We develop a stochastic coupling construction to obtain the
diffusion limit of the queue process in the Halfin-Whitt heavy-traffic regime,
and establish that it does not depend on the value of , implying that
assigning tasks to idle servers is sufficient for diffusion level optimality
Variable frame based Max-Weight algorithms for networks with switchover delay
This paper considers the scheduling problem for networks with interference constraints and switchover delays, where it takes a nonzero time to reconfigure each service schedule. Switchover delay occurs in many telecommunication applications such as satellite, optical or delay tolerant networks (DTNs). Under zero switchover delay it is well known that the Max-Weight algorithm is throughput-optimal without requiring knowledge of the arrival rates. However, we show that this property of Max-Weight no longer holds when there is a nonzero switchover delay. We propose a class of variable frame based Max-Weight (VFMW) algorithms which employ the Max-Weight schedule corresponding to the beginning of the frame during an interval of duration dependent on the queue sizes. The VFMW algorithms dynamically adapt the frame sizes to the stochastic arrivals and provide throughput-optimality without requiring knowledge of the arrival rates. Numerical results regarding the application of the VFMW algorithms to DTN and optical networks demonstrate a good delay performance.National Science Foundation (U.S.) (NSF grant CNS-0626781)National Science Foundation (U.S.) (NSF grant CNS-0915988)United States. Army Research Office (ARO Muri grant number W911NF-08-1-0238
Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration
This paper presents flow simulation results of the EUROLIFT DLR-F11
multi-element wing configuration, obtained with a highly scalable finite
element solver, PHASTA. This work was accomplished as a part of the 2nd high
lift prediction workshop. In-house meshes were constructed with increasing mesh
density for analysis. A solution adaptive approach was used as an alternative
and its effectiveness was studied by comparing its results with the ones
obtained with other meshes. Comparisons between the numerical solution obtained
with unsteady RANS turbulence model and available experimental results are
provided for verification and discussion. Based on the observations, future
direction for adaptive research and simulations with higher fidelity turbulence
models is outlined.Comment: 52nd Aerospace Sciences Meetin
Design study of Software-Implemented Fault-Tolerance (SIFT) computer
Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view
Slime mould logic gates based on frequency changes of electrical potential oscillation
Physarum polycephalum is a large single amoeba cell, which in its plasmodial phase, forages and connects nearby food sources with protoplasmic tubes. The organism forages for food by growing these tubes towards detected foodstuff, this foraging behaviour is governed by simple rules of photoavoidance and chemotaxis. The electrical activity of the tubes oscillates, creating a peristaltic like action within the tubes, forcing cytoplasm along the lumen; the frequency of this oscillation controls the speed and direction of growth. External stimuli such as light and food cause changes in the oscillation frequency. We demonstrate that using these stimuli as logical inputs we can approximate logic gates using these tubes and derive combinational logic circuits by cascading the gates, with software analysis providing the output of each gate and determining the input of the following gate. Basic gates OR, AND and NOT were correct 90%, 77.8% and 91.7% of the time respectively. Derived logic circuits XOR, half adder and full adder were 70.8%, 65% and 58.8% accurate respectively. Accuracy of the combinational logic decreases as the number of gates is increased, however they are at least as accurate as previous logic approximations using spatial growth of P. polycephalum and up to 30 times as fast at computing the logical output. The results shown here demonstrate a significant advancement in organism-based computing, providing a solid basis for hybrid computers of the future. © 2014 Elsevier Ireland Ltd
The Stromlo Missing Satellites Survey
The Stromlo Missing Satellites (SMS) program is a critical endeavor to
investigate whether cold dark matter cosmology is flawed in its ability to
describe the matter distribution on galaxy scales or proves itself once again
as a powerful theory to make observational predictions. The project will
deliver unprecedented results on Milky Way satellite numbers, their
distribution and physical properties. It is the deepest, most extended survey
for optically elusive dwarf satellite galaxies to date, covering the entire
20,000 sq deg of the Southern hemisphere. 150TB of CCD images will be analysed
in six photometric bands, 0.5-1.0 mag fainter than SDSS produced by the ANU
SkyMapper telescope over the next five years. (For more details see:
http://msowww.anu.edu.au/~jerjen/SMS_Survey.html)Comment: 4 pages, 1 figure, in "Galaxies in the Local Volume" (Sydney, 8-13
July 2007), eds B. Koribalski and H. Jerjen, Springer Astrophysics and Space
Science Proceedings, p. 18
Relationship between ecosystem productivity and photosynthetically-active radiation for northern peatlands
We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = α PPFD Pmax/(α PPFD + Pmax) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = β PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = −2.0μmol m−2s−1 for bogs and −2.7 μmol m−2s−1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 μmol m−2s−1 for bogs and 10.8 μmol m−2s−1 for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = −2.4 μmol m−2s−1) and NEE rates (α = 0.020 and Pmax = 9.2μmol m−2s−1) than the upland ecosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5–50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils
Thermodynamics of Reissner-Nordstrom-anti-de Sitter black holes in the grand canonical ensemble
The thermodynamical properties of the Reissner-Nordstr\"om-anti-de Sitter
black hole in the grand canonical ensemble are investigated using York's
formalism. The black hole is enclosed in a cavity with finite radius where the
temperature and electrostatic potential are fixed. The boundary conditions
allow us to compute the relevant thermodynamical quantities, e.g. thermal
energy, entropy and charge. The stability conditions imply that there are
thermodynamically stable black hole solutions, under certain conditions.
Instantons with negative heat capacity are also found.Comment: 15 pages, 9 figures, Revtex. Published version. Changes: figures
added to tex
- …