8,474 research outputs found

    Theory of Linear Spin Wave Emission from a Bloch Domain Wall

    Get PDF
    We report an analytical theory of linear emission of exchange spin waves from a Bloch domain wall, excited by a uniform microwave magnetic field. The problem is reduced to a one-dimensional Schr\"odinger-like equation with a P\"oschl-Teller potential and a driving term of the same profile. The emission of plane spin waves is observed at excitation frequencies above a threshold value, as a result of a linear process. The height-to-width aspect ratio of the P\"oschl-Teller profile for a domain wall is found to correspond to a local maximum of the emission efficiency. Furthermore, for a tailored P\"oschl-Teller potential with a variable aspect ratio, particular values of the latter can lead to enhanced or even completely suppressed emission.Comment: added ancillary file

    Pathophysiology of penetrating captive bolt stunning in Alpacas

    Get PDF

    Effects of Carbohydrates on Landing Mechanics and Postural Stability During Intermittent High-Intensity Exercise to Fatigue

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Nitrous oxide emission from a range of land uses across Europe

    No full text
    International audienceThe results of a literature study examining quantitative estimates of N2O emission rates are presented for a range of land-uses across Europe. The analysis shows that the highest N2O emission rates are for agricultural lands compared to forests and grasslands. The main factors regulating these rates are available mineral nitrogen, soil temperature, soil water content and the available labile organic compounds. These controls operate across different time-scales, all must exceed a certain threshold for N2O emission to occur. The results support the need for an emission factor function of land-use and climate within models describing nitrogen dynamics in catchments. This would allow the assessment of the net N2O emission within catchments in terms of current levels and potential changes associated with climate variability, climate change and land use change. Keywords: nitrous oxide, soil water content, inorganic N, soil temperature, ecosystems, land-use management, soil typ

    A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function

    Get PDF
    The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer

    Imaging Mass Spectrometry Detection of Gangliosides Species Within the Mouse Brain Following Transient Focal Cerebral Ischemia

    Get PDF
    Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18∶1, d20∶1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury
    • …
    corecore