66 research outputs found

    Inequalities in health and community-oriented social work: lessons from Cuba?

    Get PDF
    Social justice is, as the World Health Organization Commission on Social Determinants of Health (WHO CSDH, 2008) reminds us, ‘a matter of life and death’. While the stark differences in mortality rates and life expectancy between rich and poor countries might be the most obvious example of this, it is also true that ‘Within countries, the differences in life chances are dramatic and are seen in all countries – even the richest’ (WHO CSDH, 2008: 26). As the Commission demonstrates, the roots of these inequities lie in social conditions, suggesting an important role for social work in this area. Unfortunately, the Commission says very little about the type of social work that might be appropriate: nevertheless, the report does provide fresh impetus to the debate about what social workers might contribute to tackling health inequalities. In this article, we suggest that a community-oriented approach to social work is required. In making a case for this, we review the progress of the government’s drive to reduce inequalities in England,1 arguing that this has, thus far, been largely unsuccessful because it has primarily been pursued through health-care services, while addressing the wider (social) determinants of health has been a secondary consideration. In contrast, we offer the example of Cuban community-oriented social work (COSW) which has helped maintain population health at a level that stands comparison with much wealthier nations, despite the hardships and inequalities which followed economic collapse in the 1990s. In many ways the Cuban situation is unusual, perhaps unique, so we are not arguing that Cuban social work methods can be readily transferred. Rather, we suggest that, in the neglected field of tackling health inequalities, social workers can learn from the general approach taken in Cuba. To establish the context of this discussion, we begin by defining key concepts: COSW itself, health inequalities and inequity, the health gap and the health gradient

    2018 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1005/thumbnail.jp

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Changes in the Availability of Freshwater along the South Carolina and Georgia Coast due to Potential Climate Change Scenarios

    Get PDF
    2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen

    A Multi-Resolution Approach to Point Cloud Registration without Control Points

    No full text
    Terrestrial photographic imagery combined with structure-from-motion (SfM) provides a relatively easy-to-implement method for monitoring environmental systems, even in remote and rough terrain. However, the collection of in-situ positioning data and the identification of control points required for georeferencing in SfM processing is the primary roadblock to using SfM in difficult-to-access locations; it is also the primary bottleneck for using SfM in a time series. We describe a novel, computationally efficient, and semi-automated approach for georeferencing unreferenced point clouds (UPC) derived from terrestrial overlapping photos to a reference dataset (e.g., DEM or aerial point cloud; hereafter RPC) in order to address this problem. The approach utilizes a Discrete Global Grid System (DGGS), which allows us to capitalize on easily collected rough information about camera deployment to coarsely register the UPC using the RPC. The DGGS also provides a hierarchical set of grids which supports a hierarchical modified iterative closest point algorithm with natural correspondence between the UPC and RPC. The approach requires minimal interaction in a user-friendly interface, while allowing for user adjustment of parameters and inspection of results. We illustrate the approach with two case studies: a close-range (3 km) scene of relatively flat glacier ice reconstructed from four cameras overlooking Nàłùdäy (Lowell Glacier), Yukon, Canada. We assessed the accuracy of the georeferencing by comparing the UPC to the RPC, as well as surveyed control points; the consistency of the registration was assessed using the difference between successive registered surfaces in the time series. The accuracy of the registration is roughly equal to the ground sampling distance and is consistent across time steps. These results demonstrate the promise of the approach for easy-to-implement georeferencing of point clouds from terrestrial imagery with acceptable accuracy, opening the door for new possibilities in remote monitoring for change-detection, such as monitoring calving rates, glacier surges, or other seasonal changes at remote field locations
    corecore