20 research outputs found

    The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background\ud Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud \ud Methods and results\ud Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud \ud Conclusions\ud This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD):postmortem analysis of 45 cases with breakpoint mapping of two de novo translocations

    Get PDF
    Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD) is a relatively common, lethal malformation in humans. Established clinical risk factors include maternal insulin dependent diabetes mellitus and male sex of the fetus. In the majority of cases, no specific etiology can be established, although teratogenic, syndromal and single gene causes can be assigned to some cases.45 unrelated fetuses, stillbirths or infants with lethal BRAHD were ascertained through a single regional paediatric pathology service (male:female 34:11 or 3.1:1). The previously reported phenotypic overlaps with VACTERL, caudal dysgenesis, hemifacial microsomia and Müllerian defects were confirmed. A new finding is that 16/45 (35.6%; m:f 13:3 or 4.3:1) BRAHD cases had one or more extrarenal malformations indicative of a disoder of laterality determination including; incomplete lobulation of right lung (seven cases), malrotation of the gut (seven cases) and persistence of the left superior vena cava (five cases). One such case with multiple laterality defects and sirelomelia was found to have a de novo apparently balanced reciprocal translocation 46,XY,t(2;6)(p22.3;q12). Translocation breakpoint mapping was performed by interphase fluorescent in-situ hybridization (FISH) using nuclei extracted from archival tissue sections in both this case and an isolated bilateral renal agenesis case associated with a de novo 46,XY,t(1;2)(q41;p25.3). Both t(2;6) breakpoints mapped to gene-free regions with no strong evidence of cis-regulatory potential. Ten genes localized within 500 kb of the t(1;2) breakpoints. Wholemount in-situ expression analyses of the mouse orthologs of these genes in embryonic mouse kidneys showed strong expression of Esrrg, encoding a nuclear steroid hormone receptor. Immunohistochemical analysis showed that Esrrg was restricted to proximal ductal tissue within the embryonic kidney.The previously unreported association of BRAHD with laterality defects suggests that renal agenesis may share a common etiology with heterotaxy in some cases. Translocation breakpoint mapping identified ESRRG as a plausible candidate gene for BRAHD

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort

    Get PDF
    Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.Peer reviewe

    Townes-Brocks syndrome: twenty novel SALL1 mutations in sporadic and familial cases and refinement of the SALL1 hot spot region

    No full text
    Townes-Brocks syndrome (TBS) is an autosomal dominant malformation syndrome characterized by renal, anal, ear, and thumb anomalies caused by SALL1 mutations. To date, 36 SALL1 mutations have been described in TBS patients. All but three of those, namely p.R276X, p.S372X, and c.1404dupG, have been found only in single families thereby preventing phenotype-genotype correlations. Here we present 20 novel mutations (12 short deletions, five short duplications, three nonsense mutations) in 20 unrelated families. We delineate the phenotypes and report previously unknown ocular manifestations, i.e. congenital cataracts with unilateral microphthalmia. We show that 46 out of the now 56 SALL1 mutations are located between the coding regions for the glutamine-rich domain mediating SALL protein interactions and 65 bp 3\u27 of the coding region for the first double zinc finger domain, narrowing the SALL1 mutational hotspot region to a stretch of 802 bp within exon 2. Of note, only two SALL1 mutations would result in truncated proteins without the glutamine-rich domain, one of which is reported here. The latter is associated with anal, ear, hand, and renal manifestations, indicating that the glutamine-rich domain is not required for typical TBS
    corecore