340 research outputs found

    Ensemble variational Monte Carlo for optimization of correlated excited state wave functions

    Full text link
    Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowest NN eigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated using ab initio variational Monte Carlo to calculate the degenerate first excited state of a CO molecule.Comment: 7 pages, 4 figure

    Quantifying and Classifying Streamflow Ensembles Using a Broad Range of Metrics for an Evidence‐Based Analysis: Colorado River Case Study

    Get PDF
    Stochastic hydrology produces ensembles of time series that represent plausible future streamflow to simulate and test the operation of water resource systems. A premise of stochastic hydrology is that ensembles should be statistically representative of what may occur in the future. In the past, the application of this premise has involved producing ensembles that are statistically equivalent to the observed or historical streamflow sequence. This requires a number of metrics or statistics that can be used to test statistical similarity. However, with climate change, the past may no longer be representative of the future. Ensembles to test future systems operations should recognize non‐stationarity and include time series representing expected changes. This poses challenges for their testing and validation. In this paper, we suggest an evidence‐based analysis in which streamflow ensembles, whether statistically similar to and representative of the past or a changing future, should be characterized and assessed using an extensive set of statistical metrics. We have assembled a broad set of metrics and applied them to annual streamflow in the Colorado River at Lees Ferry to illustrate the approach. We have also developed a tree‐based classification approach to categorize both ensembles and metrics. This approach provides a way to visualize and interpret differences between streamflow ensembles. The metrics presented, along with the classification, provide an analytical framework for characterizing and assessing the suitability of future streamflow ensembles, recognizing the presence of non‐stationarity. This contributes to better planning in large river basins, such as the Colorado, facing water supply shortages

    White Paper 3. Managing the Colorado River for an Uncertain Future

    Get PDF
    Colorado River managers face many uncertainties—issues like climate change, future water demand, and evolving ecological priorities—and are looking for new tools to help cope with this uncertain future. They need new ways to help classify uncertain conditions, manage for uncertain conditions, and to create models in the face of a slew of oncoming unknowns. To help Colorado River stakeholders think about, talk about, and better manage the future river, the Center for Colorado River Studies offers a new white paper that distinguishes four levels of decision-making uncertainty and suggest tools and resources to manage the different levels

    Molecular Dynamics of ULTEM 9085 for 3D Manufacturing: Spectra, Thermodynamic Properties, and Shear Viscosity.

    Get PDF
    We present results of a molecular dynamic analysis of welding at the polymer-polymer interface. The analysis is performed for polyetherimide/ polycarbonate polymer blends. The work is motivated by the applications to 3D manufacturing in space. In the first part of the report, we discuss bulk and spectral characteristics of the amorphous polymer blends. The vibrational and infra-red spectra obtained using auto-correlation functions calculations in molecular dynamics are compared with the experimental spectra. The mechanical and thermal properties of the samples including heat capacity, bulk modulus, and thermal expansion coefficients are estimated and compared with experimental values. In the second part of the report, we discuss the result of molecular dynamical modeling of shear viscosity in a fully atomistic model of amorphous polymer blends with flat interface. The key result of the research is the demonstration of shear thinning behavior of the shear viscosity as a function of shear rate which is in good agreement with experimental data

    Origin of Complex Quantum Amplitudes and Feynman's Rules

    Full text link
    Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. In this paper, we show that the complex nature of the quantum formalism can be derived directly from the assumption that a pair of real numbers is associated with each sequence of measurement outcomes, with the probability of this sequence being a real-valued function of this number pair. By making use of elementary symmetry conditions, and without assuming that these real number pairs have any other algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic. We demonstrate that these complex numbers combine according to Feynman's sum and product rules, with the modulus-squared yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results unchanged. v3: Minor changes to introduction and conclusio

    Long-term outcome after early infrainguinal graft failure

    Get PDF
    AbstractPurpose: To determine the long-term outcome and prognostic factors after early infrainguinal graft failure (<30 days).Methods: Retrospective analysis of limb salvage data, patency data, and prognostic risk factors in 112 new infrainguinal bypass grafts from 1985 to 1995 that occluded within 30 days of operation.Result: Thirty-six femoropopliteal and 76 femorotibial/femoropedal arterial bypass (“index”) procedures were performed for rest pain (50%), tissue loss (31%), or disabling claudication (19%). In 103 patients, an immediate additional revascularization (“takeback”) procedure was performed at the time of early graft failure. Life table analysis of the takeback procedures for threatened limbs (n = 84) revealed limb salvage rates of 74%, 54%, 40%, and 31% at 1 month, 1 year, 3 years, and 5 years, respectively. The 1-month limb salvage rate (threatened limbs) was 12% (1 of 8) in patients who were not taken back for revascularization and 33% (4 of 12) in patients who had undergone more than one takeback procedure within 30 days. The secondary graft patency rates for the takeback procedures (n = 103) were 70%, 37%, 27%, and 23% at 1 month, 1 year, 3 years, and 5 years, respectively. Univariate and life table analysis revealed that patients who were given anticoagulation medication after the index procedure (before graft thrombosis) or patients who had undergone previous ipsilateral leg revascularization had significantly lower rates of limb salvage and graft patency (p < 0.05). The limb salvage rate was also significantly worse in patients who had single-vessel runoff compared with those who had multiple-vessel runoff (p < 0.01). Thrombectomy and revision or complete graft replacement had a better secondary patency rate than thrombectomy alone (p < 0.05). Autogenous vein grafts had better outcome than polytetrafluoroethylene-containing grafts, but statistical significance was not achieved. No significant differences in limb salvage or graft patency rates were found between femoropopliteal versus femorotibial/femoropedal bypass grafting, age, gender, previous inflow surgery, diabetes, hypertension, smoking, or cardiac, renal, or pulmonary disease.Conclusion: The long-term limb salvage and graft patency rates after takeback revascularization procedures for early graft failure are poor. Despite poor outcome, a single takeback procedure appears warranted in all patients. Multiple takeback procedures, however, do not appear to be justified, especially in patients who are given anticoagulation medication after the index bypass procedure, repeat leg bypass procedures, or if there is no potential for graft revision

    Information-Based Physics: An Observer-Centric Foundation

    Full text link
    It is generally believed that physical laws, reflecting an inherent order in the universe, are ordained by nature. However, in modern physics the observer plays a central role raising questions about how an observer-centric physics can result in laws apparently worthy of a universal nature-centric physics. Over the last decade, we have found that the consistent apt quantification of algebraic and order-theoretic structures results in calculi that possess constraint equations taking the form of what are often considered to be physical laws. I review recent derivations of the formal relations among relevant variables central to special relativity, probability theory and quantum mechanics in this context by considering a problem where two observers form consistent descriptions of and make optimal inferences about a free particle that simply influences them. I show that this approach to describing such a particle based only on available information leads to the mathematics of relativistic quantum mechanics as well as a description of a free particle that reproduces many of the basic properties of a fermion. The result is an approach to foundational physics where laws derive from both consistent descriptions and optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of 43 pages and 9 Figure

    Type IIb Supernova SN 2011dh: Spectra and Photometry from the Ultraviolet to the Near-Infrared

    Get PDF
    We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of 1.8±0.2×10421.8 \pm 0.2 \times 10^{42} erg s1^{-1} occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.Comment: 23 pages, 14 figures, 9 tables, accepted by Ap

    Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.

    Get PDF
    It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution

    The fast declining Type Ia supernova 2003gs, and evidence for a significant dispersion in near-infrared absolute magnitudes of fast decliners at maximum light

    Get PDF
    We obtained optical photometry of SN 2003gs on 49 nights, from 2 to 494 days after T(B_max). We also obtained near-IR photometry on 21 nights. SN 2003gs was the first fast declining Type Ia SN that has been well observed since SN 1999by. While it was subluminous in optical bands compared to more slowly declining Type Ia SNe, it was not subluminous at maximum light in the near-IR bands. There appears to be a bimodal distribution in the near-IR absolute magnitudes of Type Ia SNe at maximum light. Those that peak in the near-IR after T(B_max) are subluminous in the all bands. Those that peak in the near-IR prior to T(B_max), such as SN 2003gs, have effectively the same near-IR absolute magnitudes at maximum light regardless of the decline rate Delta m_15(B). Near-IR spectral evidence suggests that opacities in the outer layers of SN 2003gs are reduced much earlier than for normal Type Ia SNe. That may allow gamma rays that power the luminosity to escape more rapidly and accelerate the decline rate. This conclusion is consistent with the photometric behavior of SN 2003gs in the IR, which indicates a faster than normal decline from approximately normal peak brightness.Comment: 41 pages, 13 figures, to be published in the December, 2009, issue of the Astronomical Journa
    corecore